18. Notes on Divergent Series and Integrals.

By Shizuo Kakutani.
Mathematical Institute, Osaka Imperial University.
(Comm. by T. Takagi, m.I.a., Feb. 12, 1944.)

$\S 1$. The purpose of this paper is to prove the following two theorems:

Theorem 1. Let $x(\omega)$ and $y(\omega)$ be two real-valued non-negative measurable functions defined on the interval $\Omega=\{\omega \mid 0 \leqq \omega \leqq 1\}$ of real numbers which are not necessarily integrable on Ω. If

$$
\begin{equation*}
\int_{E} y(\omega) d \omega<\infty \quad \text { implies } \quad \int_{E} x(\omega) d \omega<\infty \tag{1}
\end{equation*}
$$

for any measurable subset E of Ω, then there exist a constant K and a real-valued non-negative measurable function $z(\omega)$ defined and integrable on Ω such that

$$
\begin{equation*}
x(\omega) \leqq K y(\omega)+z(\omega) \quad \text { for any } \quad \omega \in \Omega . \tag{2}
\end{equation*}
$$

Theorem 2. Let $\left\{a_{n} \mid n=1,2, \ldots\right\}$ and $\left\{b_{n} \mid n=1,2, \ldots\right\}$ be two sequences of real non-negative numbers not greater than 1 , for which the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are not necessarily convergent. If

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{n_{k}}<\infty \quad \text { implies } \quad \sum_{k=1}^{\infty} a_{n_{k}}<\infty \tag{3}
\end{equation*}
$$

for any subsequence $\left\{n_{k} \mid k=1,2, \ldots\right\}$ of the sequence $\{n \mid n=1,2, \ldots\}$ of all integers, then there exist a constant K and a sequence $\left\{c_{n} \mid n=\right.$ $1,2, \ldots\}$ of real non-negative numbers, for which the series $\sum_{n=1}^{\infty} c_{n}$ is convergent, such that

$$
\begin{equation*}
a_{n} \leqq K b_{n}+c_{n} \quad \text { for } \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

The proof of these theorems will be given in $\S 3$.
$\S 2$. Let Ω be an arbitrary set and let $\mathfrak{B}=\{E\}$ be a Borel field of subsets E of Ω. Let further $\varphi(E)$ be a countably additive measure defined on \mathfrak{B}. We admit the value $+\infty$ for $\varphi(E)$; but in case $\varphi(\Omega)$ $=\infty$, it is assumed that there exists a sequence $\left\{E_{n} \mid n=1,2, \ldots\right\}$ of sets $E_{n} \in \mathfrak{B}$ such that $\varphi\left(E_{n}\right)<\infty, n=1,2, \ldots$ and $\Omega=\bigvee_{n=1}^{\infty} E_{n}$.

A countably additive measure $\varphi(E)$ defined on \mathfrak{B} is regular if, for any $E \in \mathfrak{B}$ with $1 \leqq \varphi(E) \leqq \infty$, there exists an $E^{\prime} \in \mathfrak{B}$ with $E^{\prime} \leqq E$ and $0<\varphi\left(E^{\prime}\right) \leqq 1$. It is easy to see that, if $\varphi(E)$ is a regular countably additive measure defined on \mathfrak{B}, then for any positive number M and for any $E \in \mathfrak{B}$ with $M \leqq \varphi(E) \leqq \infty$, there exists an $E^{\prime} \in \mathfrak{B}$ with $E^{\prime} \leqq E$ and $M \leqq \varphi\left(E^{\prime}\right) \leqq M+1$.

Theorem 3. Let $\varphi(E)$ and $\psi(E)$ be two regular countably additive measures defined on a Borel field $\mathfrak{B}=\{E\}$ of subsets E of a set Ω. If

$$
\begin{equation*}
\psi(E)<\infty \quad \text { implies } \quad \varphi(E)<\infty \tag{5}
\end{equation*}
$$

then there exists a constant K such that

$$
\begin{equation*}
\varphi(E) \leqq K \psi(E)+K \quad \text { for any } E \in \mathfrak{Y} . \tag{6}
\end{equation*}
$$

Remark. It is not difficult to see that from (6) follows the existence of a regular countably additive measure $x(E)$ defined on \mathfrak{B} with $x(\Omega)<\infty$ such that

$$
\begin{equation*}
\varphi(E) \leqq K \psi(E)+\chi(E) \quad \text { for any } \quad E \in \mathfrak{B} \tag{7}
\end{equation*}
$$

Proof of Theorem 3. We shall first show that there exists a constant K such that

$$
\begin{equation*}
\psi(E) \leqq 2 \quad \text { implies } \quad \varphi(E) \leqq K \quad \text { for any } \quad E \in \mathfrak{B} . \tag{8}
\end{equation*}
$$

In fact, otherwise there would exist a sequence $\left\{E_{n} \mid n=1,2, \ldots\right\}$ of subsets E_{n} of Ω such that $E_{n} \in \mathfrak{B}, \psi\left(E_{n}\right) \leqq 2$ and $\sum_{k=1}^{n-1} \varphi\left(E_{k}\right)+2^{n+1} \leqq$ $\varphi\left(E_{n}\right)<\infty, n=1,2, \ldots \quad$ Let us put $E_{n}^{\prime}=E_{n}-E_{n} \cap \cup_{k=1}^{n-1} E_{k}, n=1,2, \ldots$ Then it is clear that $\left\{E_{n}^{\prime} \mid n=1,2, \ldots\right\}$ are mutually disjoint and $\psi\left(E_{n}^{\prime}\right) \leqq 2,2^{n+1} \leqq \varphi\left(E_{n}^{\prime}\right)<\infty, n=1,2, \ldots \quad$ Let us decompose each E_{n}^{\prime} into 2^{n} disjoint parts: $E_{n}^{\prime}=\cup_{p=1}^{2 n} E_{n, p}^{\prime \prime}$ in such a way that $E_{n, p}^{\prime \prime} \in \mathfrak{B}$, $p=1, \ldots, 2^{n}, 1 \leqq \varphi\left(E_{n, p}^{\prime \prime}\right) \leqq 2, p=1, \ldots, 2^{n}-1$ and $1 \leqq \varphi\left(E_{n, p_{n}}^{\prime \prime}\right)$. This is possible since $\varphi(E)$ is regular. Then it is clear that, for each n, there exists an integer $p_{n}\left(1 \leqq p_{n} \leqq 2^{n}\right)$ such that $\psi\left(E_{n, p_{n}}^{\prime \prime}\right) \leqq 2^{1-n}$. Let us now put $E^{*}=\cup_{n=1}^{\infty} E_{n, p_{n}}^{\prime \prime}$. Then it is easy to see that $\varphi\left(E^{*}\right)=\sum_{n=1}^{\infty}$ $\varphi\left(E_{n, p_{n}}^{\prime \prime}\right) \geqq \sum_{n=1}^{\infty} 1=\infty \quad$ while $\quad \psi\left(E^{*}\right) \leqq \sum_{n=1}^{\infty} \psi\left(E_{n, p_{n}}^{\prime \prime}\right) \leqq \sum_{n=1}^{\infty} 2^{1-n}=2$ contrary to the assumption (5). Thus we see that there exists a constant K which satisfies (8).

Now, for any $E \in \mathfrak{B}$ with $\psi(E)<\infty$, let n be a positive integer such that $n-1 \leqq \psi(E)<n$. Let us then decompose E into m disjoint parts: $E=\cup_{p=1}^{m} E_{p}$, where m is an integer satisfying $1 \leqq m \leqq n$, in such a way that $E_{p} \in \mathfrak{B}, p=1, \ldots, m, 1 \leqq \psi\left(E_{p}\right) \leqq 2, p=1, \ldots, m-1,0 \leqq$ $\psi\left(E_{m}\right) \leqq 2$. This is possible since $\psi(E)$ is regular by assumption. From this follows easily, because of (7), that $\varphi(E)=\sum_{p=1}^{m} \varphi\left(E_{p}\right) \leqq K m \leqq K n$ $\leqq K(\psi(E)+1)$ as we wanted to prove.
$\S 3$. It is now easy to see that Theorem 3 implies Theorem 1. We have only to put $\varphi(E)=\int_{E} x(\omega) d \omega$ and $\psi(E)=\int_{E} y(\omega) d \omega$. Since $\varphi(E)$ and $\psi(E)$ are clearly regular, so we see that there exists a constant K which satisfies (6) or equivalently

$$
\begin{equation*}
\int_{E} x(\omega) d \omega \leqq K \int_{E} y(\omega) d \omega+K \quad \text { for any measurable set } E . \tag{9}
\end{equation*}
$$

If we now put

$$
\begin{equation*}
z(\omega)=\max (x(\omega)-K y(\omega), 0), \tag{10}
\end{equation*}
$$

then it is clear that (2) is satisfied. Further, by putting $E_{0}=\{\omega \mid z(\omega)$ $\geqq 0\}$ and $E_{n}=\{\omega \mid y(\omega) \leqq n\}, n=1,2, \ldots$, we see from (9) and (10) that $\int_{E_{n}} z(\omega) d \omega=\int_{E_{n} \sim E_{0}} z(\omega) d \omega=\int_{E_{n} \sim E_{0}} x(\omega) d \omega-K \int_{E_{n} \sim E_{0}} y(\omega) d \omega \leqq K<\infty, n=$ $1,2, \ldots$, from which follows immediately that $\int_{\Omega} z(\omega) d \omega \leqq K<\infty$.

In order to show that Theorem 3 implies Theorem 2, let us put $\varphi(E)=\sum_{n \in E} a_{n}$ and $\psi(E)=\sum_{n \in E} b_{n}$ where $E=\left\{n_{k} \mid k=1,2, \ldots\right\}$ is an arbitrary (finite or infinite) subsequence of the sequence $\Omega=\{n \mid n=$ $1,2, \ldots\}$ of all positive integers. Since $\varphi(E)$ and $\psi(E)$ are clearly regular, so we see that there exists a constant K such that

$$
\begin{equation*}
\sum_{n \in E} a_{n} \leqq K \sum_{n \in E} b_{n}+K \tag{11}
\end{equation*}
$$

for any (finite or infinite) subsequence E of Ω. If we now put

$$
\begin{equation*}
c_{n}=\max \left(a_{n}-K b_{n}, 0\right), \quad n=1,2, \ldots, \tag{12}
\end{equation*}
$$

then it is clear that (4) is satisfied. Further, by putting $E_{0}=\left\{n \mid c_{n} \geqq 0\right\}$ we see from (11) and (12) that $\sum_{n=1}^{N} c_{n}=\sum_{n \in E_{0}, n \leq N} c_{n}=\sum_{n \in E_{0}, n \leq N} a_{n}$ $-K \sum_{n \in E_{0}, n \leq N} b_{n} \leqq K<\infty, \quad N=1,2, \ldots, \quad$ from which follows that $\sum_{n=1}^{\infty} c_{n} \leqq K<\infty$.

