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1. The purpose of this paper is to prove the following two
theorems"

Theorem 1. Let x(,o) and y(o) be two real-valued non-negative
measurable functions defined on the interval 2 ( I0 o 1} of real
numbers which are not necessarily integrable on 2. If

IEy(,o)d,o < implies (,o)dw <(1)

for any measurable subset E of , then there exist a constant K and
a real-valued non-gative measurable function z(w) defined and inte-
grable on 2 such that

(2) x(o) Ky()+z(o) for any o e

Theorem 2. Let (a n 1, 2, } and {b n 1, 2, } be two se-
quences of real non-negative numbers not greater than 1, for which the
series a and

_
b, are not necessarily convergent. If

b a(3)

_
implies k=l k

for any subsequence (n]k=l, 2, ...} of the sequence (nn=l, 2,...
of all integers, then there exist a constant K and a sequence (c

C1, 2, } of real non-negative numbers, for which the series

_
is

convergent, such that

(4) an Kb+c for n= 1, 2,

The proof of these theorems will be given in 3.
2. Let 9 be an arbitrary set and let = (E} be a Borel field

of subsets E of 9. Let further (E) be a countably additive measure
defined on . We admit the value + for (E); but in case (9), it is assumed that there exists a sequence (E[n= 1, 2, } of
sets E,e such that (E,)< n 1 2, and U,-

A countably additive measure (E) defined on is regular if, for
any E e with 1 (E) , there exists an E e with E E and
0 < (E’) 1. It is easy to see that, if (E) is a relar countably
additive measure defined on , then for any positive number M and
for any Ee with M (E) , there exists an E’ e wih E’ E
and M (E’) M+ 1.

Theorem 3. Let (E) and (E) be two regular countably additive
measures defined on a Borel field = (E} of subsets E of a set

(5) (E) < implies (E) < ,
then there exists a constant K such that
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(6) (E) K(E)/K for any E e .
Remark. It is not difficult to see that from (6) follows the exis-

tence of a regular countably additive measure x(E)defined on with
x() o such that

(7) (E) K(E)+ x(E) for any E .
Proof of Theorem 3. We shall first show that there exists a

constant K such that

(8) (E)2 implies (E) K for any Eel.

In fact, otherwise there would exist a sequence {E.In=l, 2, ...} of
subsets E of .2 such that Ee!3, (E)__< 2 and ,-_(E)+2n+

(E) < oo n 1 2, Let us put E’ E-E U-E,, n 1, 2,k=l

Then it is clear that (E’ln= 1, 2, } are mutually disjoint and
(E,) __< 2, 2+ <_(E’.)< c, n= 1, 2, Let us decompose each E- ’" in such a way that Einto 2 disjoint parts E= Jp=lZ.n.,
p 1,..., 2", 1 ___< (E’’. ) 2, p 1, ..., 2- 1 and 1 (E’’. ). This is
possible since (E) is regular. Then it is dear that, for each n, there
exists an integer p (1 <p < 2) such that (E".) 21-n. Let us

E" Then it is easy to see that (E*)=now put E* U= .
2(E,) > -]7--1 co while (E*) =(E’,) " 2-contra.ry to the assumption (5). Thus we see that there exists a

constant K which satisfies (8).
Now, for any Ee !3 with (E) < co, let n be a positive integer

such that n-1 (E)< n. Let us then decompose E into m disjoint
parts" E= U=E, where m is an integer satisfying 1 m < n, in
such a way that Ee!3, p=l, ..., m, 1 (E.) 2, p=l, ..., m-l, 0
(E) 2. This is possible since ,(E) is regular by assumption. From
this follows easily, because of (7), that F(E)=.(E) < Km < Kn
K((E)+ 1) as we wanted to prove.

3. It is now easy to see that Theorem 3 implies Theorem 1.

We have only to put (E)=.l.x(o)do and (E)=.l.y(o)do. Since F(E)
and #(E) are clearly regular, so we see that there exists a constant
K which satisfies (6) or equivalently

IEX(o)do KIEY((o)do+K for any measurable set(9) E.

If we now put

(10) z(,o)=max(x(,o)-Ky(,o), 0),
then it is clear that (2) is satisfied. Further, by putting Eo=(o[z(,,)

0} and E= (,o ]y(to) n}, n 1, 2, ..., we see from (9) and (10) that

EnEo En,So E Eo

1, 2, ..., from which follows immediately that I z(.,o)do K
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In order to show that Theorem 3 implies Theorem 2, let us put
(E)=Ea, and (E)=,zb, where E={nlk=l, 2, ...} is an
arbitrary (finite or infinite) subsequence of the sequence .(2= {nln
1, 2, ...} of all positive integers. Since (E) and (E) are clearly re-
gular, so we see that there exists a constant K such that

for any (finite or infinite) subsequence E of 9. If we now put

(12) c max (a-Kb, 0), n= 1, 2, ...,
then it is clear that (4) is satisfied. Further, by putting Eo= (nlc 0}
we see from (11) and (12) that ’Nn..lCn=_neEo, n<_NCn’--,neEo.nNa
--gneEo,n<NbnK , N=I, 2, ..., from which follows that


