18. Notes on Divergent Series and Integrals.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Feb. 12, 1944.)

\$ 1. The purpose of this paper is to prove the following two theorems:

Theorem 1. Let $x(\omega)$ and $y(\omega)$ be two real-valued non-negative measurable functions defined on the interval $\Omega = \{\omega \mid 0 \leq \omega \leq 1\}$ of real numbers which are not necessarily integrable on Ω . If

(1)
$$\int_E y(\omega)d\omega < \infty$$
 implies $\int_E x(\omega)d\omega < \infty$

for any measurable subset E of Ω , then there exist a constant K and a real-valued non-negative measurable function $z(\omega)$ defined and integrable on Ω such that

(2)
$$x(\omega) \leq Ky(\omega) + z(\omega)$$
 for any $\omega \in \Omega$.

Theorem 2. Let $\{a_n | n=1, 2, ...\}$ and $\{b_n | n=1, 2, ...\}$ be two sequences of real non-negative numbers not greater than 1, for which the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are not necessarily convergent. If

(3)
$$\sum_{k=1}^{\infty} b_{n_k} < \infty$$
 implies $\sum_{k=1}^{\infty} a_{n_k} < \infty$

for any subsequence $\{n_k | k=1, 2, ...\}$ of the sequence $\{n | n=1, 2, ...\}$ of all integers, then there exist a constant K and a sequence $\{c_n | n=1, 2, ...\}$ of real non-negative numbers, for which the series $\sum_{n=1}^{\infty} c_n$ is convergent, such that

(4)
$$a_n \leq Kb_n + c_n \quad for \quad n=1, 2, \dots$$

The proof of these theorems will be given in $\S3$.

§2. Let Ω be an arbitrary set and let $\mathfrak{B} = \{E\}$ be a Borel field of subsets E of Ω . Let further $\varphi(E)$ be a countably additive measure defined on \mathfrak{B} . We admit the value $+\infty$ for $\varphi(E)$; but in case $\varphi(\Omega) = \infty$, it is assumed that there exists a sequence $\{E_n \mid n=1, 2, ...\}$ of sets $E_n \in \mathfrak{B}$ such that $\varphi(E_n) < \infty$, n=1, 2, ... and $\Omega = \bigvee_{n=1}^{\infty} E_n$.

A countably additive measure $\varphi(E)$ defined on \mathfrak{B} is *regular* if, for any $E \in \mathfrak{B}$ with $1 \leq \varphi(E) \leq \infty$, there exists an $E' \in \mathfrak{B}$ with $E' \leq E$ and $0 < \varphi(E') \leq 1$. It is easy to see that, if $\varphi(E)$ is a regular countably additive measure defined on \mathfrak{B} , then for any positive number M and for any $E \in \mathfrak{B}$ with $M \leq \varphi(E) \leq \infty$, there exists an $E' \in \mathfrak{B}$ with $E' \leq E$ and $M \leq \varphi(E') \leq M+1$.

Theorem 3. Let $\varphi(E)$ and $\psi(E)$ be two regular countably additive measures defined on a Borel field $\mathfrak{B} = \{E\}$ of subsets E of a set Ω . If

(5) $\psi(E) < \infty$ implies $\varphi(E) < \infty$,

then there exists a constant K such that

No. 2.]

Notes on Divergent Series and Integrals.

(6)
$$\varphi(E) \leq K \psi(E) + K \quad \text{for any } E \in \mathfrak{V}.$$

Remark. It is not difficult to see that from (6) follows the existence of a regular countably additive measure x(E) defined on \mathfrak{B} with $x(\mathfrak{Q}) < \infty$ such that

(7)
$$\varphi(E) \leq K \psi(E) + \alpha(E)$$
 for any $E \in \mathfrak{B}$.

Proof of Theorem 3. We shall first show that there exists a constant K such that

(8)
$$\psi(E) \leq 2 \quad implies \quad \varphi(E) \leq K \quad for \quad any \quad E \in \mathfrak{B}.$$

In fact, otherwise there would exist a sequence $\{E_n \mid n=1, 2, ...\}$ of subsets E_n of \mathcal{Q} such that $E_n \in \mathfrak{B}$, $\psi(E_n) \leq 2$ and $\sum_{k=1}^{n-1} \varphi(E_k) + 2^{n+1} \leq \varphi(E_n) < \infty$, n=1, 2, ... Let us put $E'_n = E_n - E_n \cap \bigcup_{k=1}^{n-1} E_k$, n=1, 2, ...Then it is clear that $\{E'_n \mid n=1, 2, ...\}$ are mutually disjoint and $\psi(E'_n) \leq 2, 2^{n+1} \leq \varphi(E'_n) < \infty$, n=1, 2, ... Let us decompose each E'_n into 2^n disjoint parts: $E'_n = \bigcup_{p=1}^{2^n} E''_{n,p}$ in such a way that $E''_{n,p} \in \mathfrak{B}$, $p=1, ..., 2^n, 1 \leq \varphi(E''_{n,p}) \leq 2, p=1, ..., 2^n-1$ and $1 \leq \varphi(E''_{n,p_n})$. This is possible since $\varphi(E)$ is regular. Then it is clear that, for each n, there exists an integer p_n $(1 \leq p_n \leq 2^n)$ such that $\psi(E''_{n,p_n}) \leq 2^{1-n}$. Let us now put $E^* = \bigcup_{n=1}^{\infty} E''_{n,p_n}$. Then it is easy to see that $\varphi(E^*) = \sum_{n=1}^{\infty} 2^{n-1} 2^{1-n} = 2$ contrary to the assumption (5). Thus we see that there exists a constant K which satisfies (8).

Now, for any $E \in \mathfrak{B}$ with $\psi(E) < \infty$, let *n* be a positive integer such that $n-1 \leq \psi(E) < n$. Let us then decompose *E* into *m* disjoint parts: $E = \bigcup_{p=1}^{m} E_p$, where *m* is an integer satisfying $1 \leq m \leq n$, in such a way that $E_p \in \mathfrak{B}$, $p=1, ..., m, 1 \leq \psi(E_p) \leq 2$, p=1, ..., m-1, $0 \leq \psi(E_m) \leq 2$. This is possible since $\psi(E)$ is regular by assumption. From this follows easily, because of (7), that $\varphi(E) = \sum_{p=1}^{m} \varphi(E_p) \leq Km \leq Kn$ $\leq K(\psi(E)+1)$ as we wanted to prove.

§3. It is now easy to see that Theorem 3 implies Theorem 1. We have only to put $\varphi(E) = \int_E x(\omega)d\omega$ and $\psi(E) = \int_E y(\omega)d\omega$. Since $\varphi(E)$ and $\psi(E)$ are clearly regular, so we see that there exists a constant K which satisfies (6) or equivalently

(9)
$$\int_E x(\omega)d\omega \leq K \int_E y(\omega)d\omega + K$$
 for any measurable set E.

If we now put

(10)
$$z(\omega) = \max(x(\omega) - Ky(\omega), 0)$$

then it is clear that (2) is satisfied. Further, by putting $E_0 = \{\omega \mid z(\omega)\} \ge 0\}$ and $E_n = \{\omega \mid y(\omega) \le n\}, n = 1, 2, ..., we see from (9) and (10) that <math>\int_{E_n} z(\omega) d\omega = \int_{E_n \cap E_0} z(\omega) d\omega = \int_{E_n \cap E_0} x(\omega) d\omega - K \int_{E_n \cap E_0} y(\omega) d\omega \le K < \infty, n = 1, 2, ..., from which follows immediately that <math>\int_{\Omega} z(\omega) d\omega \le K < \infty$.

S. KAKUTANI.

In order to show that Theorem 3 implies Theorem 2, let us put $\varphi(E) = \sum_{n \in E} a_n$ and $\psi(E) = \sum_{n \in E} b_n$ where $E = \{n_k \mid k = 1, 2, ...\}$ is an arbitrary (finite or infinite) subsequence of the sequence $\mathcal{Q} = \{n \mid n = 1, 2, ...\}$ of all positive integers. Since $\varphi(E)$ and $\psi(E)$ are clearly regular, so we see that there exists a constant K such that

(11)
$$\sum_{n \in E} a_n \leq K \sum_{n \in E} b_n + K$$

for any (finite or infinite) subsequence E of Ω . If we now put

(12)
$$c_n = \max(a_n - Kb_n, 0), \quad n = 1, 2, ...,$$

then it is clear that (4) is satisfied. Further, by putting $E_0 = \{n \mid c_n \ge 0\}$ we see from (11) and (12) that $\sum_{n=1}^{N} c_n = \sum_{n \in E_0, n \le N} c_n = \sum_{n \in E_0, n \le N} a_n$ $-K \sum_{n \in E_0, n \le N} b_n \le K < \infty$, N=1, 2, ..., from which follows that $\sum_{n=1}^{\infty} c_n \le K < \infty$.