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1. If there is a one-to-one correspondence between the points of
two curves in a three dimensional Euclidean space, and if the tangents
at corresponding points are parallel, then the principal normals and
consequently the binormals are parallel also. In this case, one of the
two curves is said to be deducible from the other by a Combescure
transformation. H.A. Hayden’ has tried to extend this result to the
case of an n-dimensional Riemannian space using the word "parallel"
in Levi-Civita’s sense. The parallel tangent deformation is by de-
finition an infinitesimal transformation which displaces the tangent
parallelly at each point, and the generalized Combescure transformation
(briefly G.C. transformation) a parallel tangent deformation which
displaces first normal, second normal, and (n-1)-st normal paral-
lelly also at each point.

If a curve is such that every parallel tangent deformation is a
G.C. transformation, he says that the curve possesses the G.C. pro-
perty, and if a space is such that every curve in it possesses the G. C.
property, he says that the space itself possesses the G.C. property.
Then he showed that the only Riemannian space which possesses the
G.C. property is flat space.

In the Paragraph 2 of this Note, we shall consider the space in
which exists a vector field that defines a parallel tangent deformation
for every curve in the space, and show that such a space is the one
which admits a concircular transformation-.

In the Paragraph 3, we shall consider the relations between such
space and the space which contains a concurrent vector field.

2. Let x(s) (,/, ,,... 1, 2,..., n) be a curve, in an n-dimensional
Riemannian space V, s being the arc length, and let every point x
on the curve be displaced to =x+z by an infinitesimal deforma-
tion, e being an infinitesimal constant. Then the curve x(s) is deformed
infinitesimally and the equations of the deformed curve are

x (s) +
Differentiation of these equations with respect to gives

d ds(2.2) + )\ds

1) H.A. Hayden: Deformations of a curve, in a Riemannian n-space, which dis-
places certain vectors parallelly at each point. Proc. London Math. Soc. 32 (1931),
321-336.

2) K. Yano: Concircular geometry I, II, III, IV, Proc. 16 (1940), 195-200, 354-
360, 442-448, 505-511, V, Proc. 18 (1942), 446-451.
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d dxThen, the difference D between the two vectors and
ds ds

-e{}dx’$-- which is obtained by a parallel displacement of dx--- from
ds ds

the point x(s) to (), is given by

being the Christoffel symbols of the second kind.
Calculating the ds/d in (2.3), we ohtain, from (2.2),

(2.4) ds 1- zg, dx
d 3s ds

to the first order, /s denoting the covariant differentiation along the
curve x(s). Thus, the equations (2.3) become

(2.5) -s Ls--g’s ds ds

which shows that a necessary and sufficient condition that the in-
finitesimal deformation =x+e be a parallel tangent deformation
for the curve x(s) is that

(2.6) fl-- , dx
s ds

where is necessarily equal to g(? dx because of the identitys ds
dx dxg
ds ds
Let us now suppose that the vector is defined in all the space,

that is, all the points x in V are displaced to =x +(x) by an
infinitesimal deformation, and that every deformation defined by
for any curve is always a parallel tangent deformation of this curve.

Then from (2.6), we have dx--- = dx’ dx dx from which":ds ;ds ds ds’
dx dx_1. being a point21 .(: +; ) l__.n g, thus,

function, we have

(2.7) $:=$,

where the semi-colon denotes the covariant derivative with respect to
(}. The equation (2.7) written in the covariant form

(2.8)

shows that the vector $ is a gradient of a function F(X), say

(2.9)
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Putting F= -1-, we have fr’om (2.8)

(2.10) p: ,---g,,

where = log and = .
x F

The equations (2.10) show that our Riemannian space V admits
a concircular transformation ,=g,. One of the present authors
has shown in a previous paper) that a necessary and sufficient con-
dition that a V admits a concircular transformation is that V, con-
tains family of totally umbilical hypersurfaces whose orthogonal
trajectories are geodesic Ricci-curves. It is easily shown that in such
a case all the totally umbilical hypersurfaces are of constant mean
curvature. For, from the Codazzi equations for he hypersurfaces

x =x (x i, ..., i)
.; -H;=BB B B R.,

where H denotes the second fundamental tensor, B the unit normal,

R., the curvature tensor and Bj. xZ we can deduce
X

(2.11) gH;-gH; BBj.ZB’BhR

the second fundamental tensor H having the form

H=gH.

Contracting g to (2.11), we have

(2.12) (n- 2)H; BRBi
because of the identities

g.,., g,_BB, BB R. 0 and -R R
where R denotes the mixed Ricci-tensor, say, R=g

The equations (2.12) show that, in the case n > 2, if the normal
B is in the Ricci-direction, then the mean curvature H is constant and
vice versa.

Thus, we have the
Theorem In order that a Riemannian space V (n > 2) admits an
infinitesimal deformation which gives a parallel tangent deformation
for any curve in V, it is necessary and sucient that the V contains

family of totally umbilical hypersurfaces of constant mean curvature
whose orthogonal trajectories are geodesics.

The expression for the constant mean curvature may be easily
found from the equation (2.8) as follows: The hypersurfes F=
constants being totally umbilical and of constant mean curvature, we
have, by covariant differentiation of this equation along the hyper-
surface F= const, or x x(x),

1) K. Yano: Concircular geometry II, loc. cit.
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(2.13) B=O and }. B’B -t-gHB O,

hence (g);:2g ofiB 2B O,

and we know that the magnitude of the is constant along the
hypersurface F=const. The second equation of (2.13) and (2.8) give
us

(2.14) H=- ,
hence, H being constant, is also constant along the hypersurfaces
F=const.

3. One of the present authors has studied in a previous paper)

the concurrent vector field in a Riemannian space. The necessary
and sufficient condition that the vector field be a concurrent one
is that

(3.1)

where a is a suitable scalar. Writing as $ instead of a we have

(s.2)

In this case, the end point of the vector $ represents just the point
fixed by the group of holonomy.

The condition (3.2)is quite analogous to (2.7), hence, if is a
concurrent vector field satisfying (3.2), then the vector defines a
parallel tangent deformation discussed in the Paragraph 2. But con-
versely, being a vector field defining a parallel tangent deformation,
the vector gives not necessarily a concurrent vector field.

Let be a vector definining a parallel tangent deformation, that
is to say, sagsfying the equation (2.7). Then, all the hypersurfaces
F=constants are totally umbilical and of constant mean curvature,
and consequently by a well known theoreme), the normals to the
hypersurfaces F=constants are concurrent along the hypersurfaces,
say, 5 is concurrent along the hypersurfaces F=constants. In order
that (x) be a concurrent vector field in the space, it must be also
concurrent in the direction normal to the hypersurfaces and its end
point must coincide with the center of mean curvature passing through
the point x.

Thus, in order that the be a concurrent vector field in the
space, it must be of the form

(3.3) I--B,
H

B being the unit normal to the hypersurfaces and H the constant
mean curvature. From (3.3), we have H=I, then the equation (2.14)
gives us =- 1. Thus, in order that a vector 5 defining a parallel

1) K. Yano" Sur le paralllisme et la concourance dans l’espace de Riemann,
Proc. 19 (1943), 189-197.

2) K. Yano, loc. cit.
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tangent deformation be a concurreat one, it is necessary and sufficient
that the scalar appearing in . ,=g, be constant at all the points
of the space.

The curve generated by the vector being a geodesic, if denotes

!B fixed by the group of holonomy the magnitude ofthe point -H
e must be of the form

(3.4) =c-s
s being the arc length of the geodesic, and c an arbitrary constant.
Thus, we have form (2.14) and =-1

1 --m 8
H

which shows that the lengths of the geodesic orthogonal trajectories
between the two of the hypersurfaces are constant and equal to the
difference of the constant radius of mean curvature of these totally
umbilical hypersurfaces. Conversely, if these conditions are satisfied,
the vector field defined by (3.3) at all the points of the space is a
concurrent ector field.

From the above considerations, we know that if is a concurrent
vector field in V, then V must contain co family of hypersurfaces
totally umbilical and of constant mean curvature whose orthogonal
trajectories are geodesics, and the lengths of geodesic orthogonal
trajectories contained in two of these hypersurfaces are constant and
equal to the difference of the constant radius of mean curvature of
these hypersurfaces. Conversely, if these conditions are satisfied, the
direction normal to these hypersurfaces is concurrent along these hyper-
surfaces and also in the direction normal to the hypersurfaces. Thus
we have the
Theorem" In order that a Riemannian space V, admits a concurrent
vector field, it is necessary and sufficient that the V, contains
family of hypersurfaces totally umbilical and of constant mean curvature
whose orthogonal trajectories are geodesics and the arc lengths of these
geodesic orthogonal trajeetories contained in two of these hypersurfaces
are constant and equal to the difference of the constant radius of mean
curvature of the two hypersurfaces.

This theorem must replace the theorem 5.4 in the above cited
paper which contains an error.


