
No. 7.] 451

9. Equivalence of Two Topologies of Abelian Groups.

By K6saku YOSIDA and Turane IWAMURA.
Mathematical Institute, Nagoya Imperial University.

(Comm. by T. TAKAGI, lVI.I.A., July 12, 1944.)

Let G be a locally compact (=bieompact), separable abelian group
and let X be the totality of continuous characters Z(g) of G. It is
well known2 that X is also a locally compact, separable abelian group
by the multiplication

Z,Z’(g) Z(g)Z(g)

and by Pontrjagin’s topology induced from the (closed)neighbourhood"

U(Z)= {Z sup IZ(g)-Z(g) e, Go=compact subset of G }.
geGo

X also constitutes a locally compact, separable topological space . by
the topology induced from the (closed) neighbourhood

V(Z,)= Z x(g)Z(g)dg , i= 1, 2, ..., n
G

where x(g)eL(G) viz. x(g) denote measurable functions integrable
over G with respect to Haar’s invariant measure dg on G. The latter
topology is introduced by I. Gelfand and D. Raikov), and its equivalence
to Pontrjagin’s topology plays a fundamental rSle in the ring-theoretic
treatment and extension of the classical Fourier analysis based upon
the theory of normed ring4). However the proof of the equivalence is,
so far as we know, not published by the Russian school, though stated
and used by them repeatedly5.

The purpose of the present note is i): to give it a proof and ii)
to show that the character group is a topological group in Gelfand-
Raikov’s topology even when G is not separable. For the purpose we
make use of the following

Lemma. For any Z2, the mapping

1) A continuous character of G is a continuous homomorphic mapping of G in
the topological group of rotations of a circle.

2) L. Pontrjagin: Topological group, Princeton (1939), 127.
3) C.R. URSS, 28, 3 (1940).
4) D. Raikov C.R. URSS, 28, 4 (1940). M. Krein C.R. URSS, 30, 6 (1941).

D. Raikov: C.R. URSS, 30, 7 (1941). K. Yosida: Proc. 20 (1944), 269. The author
(Yosida) wishes to withdraw the {}3 of this note, since the Lemma 2 is valid for
z e LI(G) only and thus the arguments in {}3 is insufficient. A complete proof and the
fact that Bochner-Raikov’s theorem may be derived from Plancherel’s theorem will be
published elsewhere.--During the proof, Y. Kawada kindly communicated that 3 may
be obtained from Bochner-Raikov’s theorem.

5) H. Anzai kindly communicated M. Fukamiya’s unpublished proof of the
equivalence, which is entirely different from ours.
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of . on . is a topological one.

Proof. The inclusion ;geU()f) is equivalent to the inclusion
; e U(;2:) where

x’(g) x(g))(g), )/l(g) Z( g)

Proof of i). It is evident that the mapping

(1) X Z-- Z e ’

e, i=1,2,...,n}
Q.E.D.

is continuous. Hence, by the lemma, we have only to show that for
any neighbourhood U(Zo) in X of the unit-character Zo(Zo(g) 1) there
exists a neighbourhood (Zo) in of Zo satisfying U(;0) (Zo) as
subset (without topology) of X.

Let W(;0) be a compact and symmetric neighbourhood in X of ;o"

(2) w(0)= W(o)-= (z-; e w(0)}

such that

(3) U(;o) W(o)z= {;;o , ;o e W(Zo)}.

Since X is separable there exists an enumerable sequence {;} X
such that

X= U W(o),
i=l

where

(4) ,W(o)= { Z= XZ’, Z’ e W(Zo)}.

By the continuity of the mapping (1), the image ;,W()o) in . of the
compact set ,W(;o) in X is also a compact set of X. X being com-

plete as a locally compact space, at least one compact set ;,W(;o)
contains a neighbourhood V(;,). This results from the fact that a
complete space is not of Baire’s first category. Hence, by the lemma,

the neighbourhood ;;W(;0) in X contains a neighbourhood Vl(;o) in

of :o. Thus there exists ; such that the neighbourhood Zl(o) in. contains a neighbourhood in of Xo. Hence Z l(;o) ;o and thus

W(;o) ;-, W(;o) by (2). Therefore, by (3), there exists a neigh-
bourhood (;o) in . of Xo which satisfies

U(;o) W(;o) V()0), as subsets (without topology) of X.
Q.E.D.

Remark. The separability of G is only used in (4). Hence i)
holds good if, for example, X is compact or connected.

Proof of ii). Since x(g) e L(G) implies y(g)=x(-g) e L(G) and
v.v., a subset of . is a neighbourhood e. if and only if V-is a neighbourhood of Z-. Thus ;- is a continuous function of Z.
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It remains to show that ;1. is a continuous function of two variables
f, ;.. By the lemma and by the commutativity of ., it is sufficient
to prove that for every neighbourhood V of the unit-character
there exists a neighbourhood W of 0 such that W" V.

A generic neighurhood of 0 is the intersection of a finite number
of sets of the form

where > 0 and x(g)e L(G). For any such e, there exists a step
function y(g)eLl(G) sagsfying l[x-y][</3. Since this inequality

implies that for every Ze .__--z(g)Z(g)dg-_..vY(g)Z(g)dg </3, we

have (y, e/3) (x, ). We may therefore take as x(g) only step
functions from L(G), and so only characteristic functions XE of measur-
able subsets E of G with 0 < re(E) < (m indicates Haar’s measure).

Put

Let e’>0 and put D(Z,E,’)={g;geE, l-Z(g)[>g}; this is a
measurable set with finite measure. It is easily seen that, if
e’ < e and if e’, # > 0 are sufficiently small, the set V(E, e’, )=
{Z; m(D(Z, E, e’)) < } is contained in (E, s). Moreover, we have
always V(E, Y]2,) V(E, ’, ). Hence it is sufficient to show that
for any e’, > 0 there exists an e > 0 such that U(E, ) V(E, ’, ’).
Such an e may be given, as will be shown below, by =", where

"= inf -(1-(g)), indicating the real part of complexa

humor. Since ](g)= 1, we have 1-(g) 0 everywhere and

Ze (E,e), i. e. (1-(g))dg]e. ThenSuppose D(, E, ’)
E

coincides with C= {; e N, 1-Z() > e"}. Sinee (1-Z()g
+.[(g)dg,, where indicates the imaginary

part of a complex number, we have

e> E(1--X(g))dg c(1-NX(g))dg "m(C)="m(D(X, E, ’))
Hence m(D(.X, E, ’)) < e/"=, i. e. e V(E, e’, ). Thus we have

shown U(E, ) V(E, e’, ), and the proof is complete.


