93. La structure des fonctions projectives, I.

Par Motokiti Kondô.

L'institut mathématique, l'université impériale de Kyusyu, Fukuoka. (Comm. by S. KAKEYA, M.I.A., July 12, 1944.)

Parmi le domaine des fonctions définies effectivement, il y a diverses classes de celles-ci, mais une de celles très importantes est la classe des fonctions projectives et au point de vue de MM. C. Kuratowski et A. Tarski, toutes les fonctions définies individuellement appartiennent à cette classe. Donc, la recherche des fonctions de cette classe est plus haut desirée et le but de cette note est de donner quelques propriétés de celles-ci.

1. D'après la définition de M. N. Lusin¹⁾, on dit qu'une fonction est projective quand son image géométrique est projective. Or, pour envisager la relation pareille entre les fonctions projectives et les ensembles projectifs, il n'est pas utile et donc nous les définirons en quelque autre forme par l'induction mathématique. Soit R un espace métrique, complet et séparable. On dit alors qu'une fonction F(x) définie sur R est projective de la classe A_1 (ou bien C_1) quand il existe une fonction F(x,y) de Baire définie sur l'espace produit $R \times I$, où I désigne l'ensemble de tout les nombres réels, et qui remplit la condition

(*) borné sup.
$$F(x, y) = F(x)$$
 (ou bien borné inf. $F(x, y) = F(x)$),

et qu'une fonction est projective de la classe B_1 , quand elle est de la classe A_1 et C_1 en même temps. Nous supposons maintenant que les fonctions projectives de la classes A_k , B_k et C_k (k=1,2,...,n) soient déjà définies. On dit alors qu'une fonction F(x) définie sur R est projective de la classe A_{n+1} (ou bien C_{n+1}) quand il existe une fonction F(x,y) de la classe C_n (ou bien de la classe A_n) définie sur $R \times I$ et remplit la condition (*), et enfin qu'une fonction est projective de la classe B_{n+1} quand elle est de la classe A_{n+1} et C_{n+1} en même temps. La famille des fonctions ainsi définies coincide précisément avec celle des fonctions projectives au sens de M. N. Lusin comme nous verrons tard.

2. Le problème posé d'abord est la caractérisation des fonctions de ces classes. Nous avons pour ce problème le

Théorème 1. Pour qu'une fonction F(x) définie sur R, où R désigne un espace métrique, complet et séparable, est projective de la classe A_n ou bien B_n ou bien C_n , il faut et il suffit que les ensembles

$$Ens\left(F(x)\geq r\right)$$

sont pour tous les nombres réels r projectifs de la classe A_n ou bien B_n ou bien C_n respectivement.

Théorème 2. Pour qu'une fonction F(x) définie sur R est projective de la classe B_n , il faut et il suffit que les ensembles

¹⁾ N. Lusin, Leçons sur les ensembles analytiques. Paris, 1930.

$$Ens\left(r \geq F(x) \geq s\right)$$

sont pour tous les nombres réels r et s projectifs de la classe B_n .

D'après ces deux théorèmes, nous pouvons voir sans peine que les fonctions projectives à notre sens coincident avec celles au sens de M. N. Lusin. Et de plus, nous avons le

Corollaire 1. Pour qu'une fonction F(x) définie sur R est projective de la classe B_n , il faut et il suffit que son image géométrique soit projectif de la classe B_n .

Encore, en verte de la propriété des ensembles projectifs, nous avons le

Corollaire 2. Quand une suite convergente des fonctions projectives de la classe A_n ou bien B_n ou bien C_n est donnée, la limite de cette suite appartient aussi à la même classe.

3. Or, pour la composition des fonctions projectives, nous pouvons voir le

Théorème 3. Soient $G(t_1, t_2, ..., t_m)$ une fonction continue des variables $t_1, t_2, ..., t_m$ telle qu'elle soit monotone croissante pour chaque variable t_k quand les (m-1) variables restés sont fixés, R un espace métrique complet et séparable, et $F_k(x)$ (k=1, 2, ..., m) les fonctions projectives de la classe A_k (ou bien C_n) et définies sur R. Alors, la fonction $G(F_1, F_2, ..., F_m)$ composée est aussi projective de la classe A_n (ou bien C_n).

Démonstration. Pour simplifier l'exposition de la démonstration, nous considérons ici le cas où m=2, mais cette restriction ne perd la partie essentielle de la démonstration. Nous prenons l'espace produit $R_0=R\times T_1\times T_2$, où T_i (i=1,2) sont les ensembles de tous les nombres réels, et nous désignons par Γ_i l'image géométrique de $F_i(x)$ contenu dans l'espace produit $R\times T_i$. Nous avons alors pour un nombre réel r

(1)
$$\operatorname{Ens}(G(F_1(x), F_2(x)) \geq r) = \operatorname{Proj}_R(\Gamma_1 \times T_2)(\Gamma_1 \times T_2)(R \times N)$$
,

où $N = \operatorname{Ens} \left(G(t_1, t_2) \geq r \right)$. Maintenant, nous considérons l'ensemble $(\Gamma_1 \times T_2)(\Gamma_2 \times T_1)(R \times N)$. Nous donnons ici pour un nombre naturel m les rectangulaires Q_{ij} (i, j = -m, -m+1, ..., 0, 1, ..., m-2, m-1) tels qu'on ait $i/m \leq \nu(t_1) \leq (i+1)/m$ et $j/m \leq \nu(t_2) \leq (j+1)/m$ et \hat{Q}_{ij} (i, j = -m, -m+1, ..., 0, 1, ..., m-2, m-1) tels qu'on ait $i/m \leq \nu(t_1)$ et $j/m \leq \nu(t_2)$, où $\nu(t) = t/(1+|t|)$. Et, nous dirons que \hat{Q}_{ij} est normal quand nous avons Q_{ij} $N \neq 0$. Nous avons alors les suivants.

(a) Quand \hat{Q}_{ij} est normal, nous avons pour tout point (t_1, t_2) de \hat{Q}_{ij}

$$\mathrm{dis}\left(ig(
u(t_1),
u(t_2)ig),
u(N)
ight) \leqq 2/m$$
 ,

où $\nu(N)$ désigne l'image de N par la transformation $t'_1 = \nu(t_1)$ et $t'_2 = \nu(t_2)$. En effet, quand \hat{Q}_{ij} est normal, il existe un point $p_0 = (t_1^0, t_2^0)$ de $Q_{ij}N$. Or, pour un point (t_1, t_2) de \hat{Q}_{ij} , nous pouvons choisir Q_{kl} tel qu'on ait $(t_1, t_2) \in Q_{kl} \subseteq \hat{Q}_{ij}$. Nous avons alors $i \subseteq k$, $j \subseteq 1$ et $i/m \subseteq 1$ $\nu(t_1^0) \leq (i+1)/m$, $j/m \leq \nu(t_2^0) \leq (j+1)/m$, d'où Q_{kl} contient au moins un point de N. Quand nous le désignons par (\bar{t}_1, \bar{t}_2) , nous avons

$$\begin{split} \operatorname{dis} \left(\left(\nu(t_1), \nu(t_2) \right), \nu(N) \right) & \leq \operatorname{dis} \left(\left(\nu(t_1), \nu(t_2) \right), \left(\nu(\bar{t}_1), \nu(\bar{t}_2) \right) \right) \leq \delta \left(\nu(Q_{kl}) \right) \geq 2/m \,, \\ \operatorname{c'est} \ \operatorname{ce} \ \operatorname{que} \ \operatorname{nous} \ \operatorname{demandons}. \end{split}$$
 C. Q. F. D.

(b) Pour un point (t_1, t_2) de N, il existe un rectangulaire normal \hat{Q}_{ij} tel qu'on ait $(t_1, t_2) \in \hat{Q}_{ij}$.

En effet, $(t_1 t_2) \in N$ entraine l'existence d'un rectangulaire Q_{ij} qui contient (t_1, t_2) et Q_{ij} est contenu dans un rectangulaire normal \hat{Q}_{ij} , d'où $(t_1, t_2) \in \hat{Q}_{ij}$.

Maintenant, nous posons pour les nombres naturels i, j et m

$$R_{ij}^{(m)} = \operatorname{Ens}\left(
u\Big(F_1(x)\Big) \geqq rac{i}{m}
ight)\operatorname{Ens}\left(
u\Big(F_2(x)\Big) \geqq rac{j}{m}
ight).$$

Or, comme les fonctions $F_i(x)$ (i=1,2) sont projectives de la classe A_n (ou bien C_n), les ensembles $\operatorname{Ens}\left(\nu\left(F_1(x)\right) \geq \frac{i}{m}\right)$ et $\operatorname{Ens}\left(\nu\left(F_2(x)\right) \geq \frac{j}{m}\right)$, et par suite $R_{ij}^{(m)}$ sont projectifs de la classe A_n (ou bien C_n). Donc, la somme

$$S^{(m)} = \sum_{i=1}^{m} R_{ij}^{(m)} \times Q_{ij},$$

où la sommation $\sum_{i=1}^{n}$ et end sur tous les rectangulaires normals \hat{Q}_{ij} , est aussi projectif de la classe A_n (ou bien C_n). Cependant, nous pouvons voir l'égalité

(2)
$$\operatorname{Proj}_{R} \prod_{m=1}^{\infty} S^{(m)} = \operatorname{Proj}_{R} (\Gamma_{1} \times T_{2}) (\Gamma_{2} \times T_{1}) (R \times N).$$

En effet, pour un point $x_0 \in \operatorname{Proj}_R \prod_{m=1}^{\infty} S^{(m)}$, il existe un point (t_1^0, t_2^0) tel qu'on ait $(x^0, t_1^0, t_2^0) \in \prod_{m=1}^{\infty} S^{(m)}$. Nous avons alors $(x^0, t_1^0, t_2^0) \in S^{(m)}$ et donc il existe un rectangulaire normal \hat{Q}_{ij} tel qu'on ait $(x^0, t_1^0, t_2^0) \in R_{ij}^{(m)} \times \hat{Q}_{ij}$ et de plus $x^0 \in R_{ij}^{(m)}$. Par conséquent, nous avons $\nu(F_1(x^0)) \geq i/m$ et $\nu(F_2(x^0)) \geq j/m$, d'où $(F_1(x^0), F_2(x^0)) \in \hat{Q}_{ij}$ et donc en verte de (a)

dis
$$((\nu(F_1(x^0)), \nu(F_2(x^0))), \nu(N)) \le 2/m$$
 $(m=1, 2, ...).$

Or, puisque $G(t_1, t_2)$ est continue, N est fermé et par suite $(F_1(x^0), F_2(x^0))$ appartient à N. Donc, $(x^0, F_1(x^0), F_2(x^0))$ appartient à $(\Gamma_1 \times T_2)(\Gamma_2 \times T_1)$ $(R \times N)$ et nous avons $x^0 \in \operatorname{Proj}_R(\Gamma_1 \times T_2)(\Gamma_2 \times T_1)(R \times N)$.

Inversement, x^0 appartient à le côté droit de (2), il existe un point (t_1^0, t_2^0) tel qu'on ait $(x^0, t_1^0, t_2^0) \in (\Gamma_1 \times T_2) (\Gamma_2 \times T_1) (R \times N)$, d'où nous avons $t_i^0 = F_i(x^0)$ (i=1,2) et donc $\left(F_1(x^0), F_2(x^0)\right) = (t_1^0, t_2^0) \in N$. Donc, d'après (b), il existe pour tout nombre naturel m un rectangulaire normal \hat{Q}_{ij} qui contient $\left(F_1(x^0), F_2(x^0)\right)$ et donc $\nu\left(F_1(x^0)\right) \geq i/m$ et $\nu\left(F_2(x^0)\right) \geq j/m$, d'où $x^0 \in R_{ij}^{(m)}$. Nous avons alors $\left(x^0, F_1(x^0), F_2(x^0)\right) \in R_{ij}^{(m)} \times \hat{Q}_{ij} \subseteq S^{(m)}$ et par

suite $x^0 \in \operatorname{Proj}_R \prod_{m=1}^{\infty} S^{(m)}$. Par conséquent, nous avons l'égalité (2) et d'où d'après (1)

(3)
$$\operatorname{Proj}_{R} \prod_{m=1}^{\infty} S^{(m)} = \operatorname{Ens} \left(G \left(F_{1}(x), F_{2}(x) \right) \geq r \right).$$

Puis, nous considérons la structure du côté gauche de (3). Comme $S^{(m)}$ contient un nombre fini de terme $R^{(m)}_{ij} \times Q_{ij}$ et donc nous avons une suite finie

$$E_1^{(m)}, E_2^{(m)}, ..., E_{\lambda_m}^{(m)} \qquad (m=1, 2, ...)$$

de ces termes, d'où $S^{(m)} = \sum_{k=1}^{\lambda_m} E_k^{(m)}$. Maintenant, nous définirons un système $\{E_{n_1, n_2, \dots, n_k}\}$ $(k, n_k = 1, 2, \dots)$ de Souslin comme il suit :

- 1) quand il existe dans les chiffres $n_1, n_2, ..., n_k$ un tel qu'on ait $n_i > \lambda_i$, nous nosons $E_{n_1, n_2, ..., n_k} = 0$,
- 2) quand nous avons $n_i \leq \lambda_i$ (i=1, 2, ..., k), nous posons $E_{n_1, n_2, ..., n_k}$ = $\operatorname{Proj}_R E_{n_1}^{(1)}, E_{n_2}^{(2)}, ..., E_{n_k}^{(k)}$.

Nous avons alors

(4)
$$\sum_{(n_1, n_2, ...)} \prod_{k=1}^{\infty} E_{n_1, n_2, ..., n_k} = \operatorname{Proj}_R \prod_{m=1}^{\infty} S^{(m)}.$$

Or, s'il existe un chiffre n_j qui est supérieure que λ_j , nous avons $E_{n_1,n_2,\ldots,n_k}=0$ et donc d'après un théorème de M. W. Sierpiński¹, nous avons

(5)
$$\sum_{(n_1, n_2, \dots, n_k)} \prod_{k=1}^{\infty} E_{n_1, n_2, \dots, n_k} = \prod_{k=1}^{\infty} \sum_{(n_1, n_2, \dots, n_k)} E_{n_1, n_2, \dots, n_k}.$$

Ici, les ensembles $E_{n_1,n_2,...,n_k}$ sont projectifs de la classe A_n (ou bien C_n) et par suite d'après (3), (4) et (5) Ens $\left(G\left(F_1(x),F_2(x)\right)\geq r\right)$ est de la même classe, d'où d'après le théorème 1 la fonction $G\left(F_1(x),F_2(x)\right)$ est projective de la classe A_n (ou bien C_n). C. Q. F. D.

Corollaire. Soient $G(t_1, t_2, ..., t_m)$ une fonction de Baire des variables $(t_1, t_2, ..., t_m)$ telle qu'elle soit monotone croissante pour chaque variable quand les (m-1) variables restés sont fixés, $F_k(x)$ (k=1, 2, ..., m) les fonctions projectives de la classe A_n (ou bien C_n) et définies sur un espace métrique R complet et séparable. La fonction composée $G(F_1(x), F_2(x), ..., F_m(x))$ est alors projective de la classe A_n (ou bien C_n).

Théorème 4. Soient $G(t_1, t_2, ..., t_m)$ une fonction de Baire des variables $t_1, t_2, ..., t_m$, $F_k(x)$ (k=1, 2, ..., m) les fonctions projectives de la classe B_n et définies sur un espace métrique R complet et séparable. La fonction composée $G(F_1(x), F_2(x), ..., F_m(x))$ est aussi projective de la classe B_n .

Démonstration. De même que la démonstration du théorème précédent, en supposant que m=2, nous prenons l'espace produit

¹⁾ C. R. de Varsovie, 22 (1929), p. 155-159.

 $R_0 = R \times T_1 \times T_2$, où T_i (i=1,2) sont les ensembles de tous les nombres réels, et nous désignons par Γ_i l'image géométrique de $F_i(x)$ contenue dans l'espace produit $R \times T_i$. Nous avons alors pour deux nombres réels r et s tels qu'on ait $r \ge r$

(6) Ens
$$(r \ge G(F_1(x), F_2(x)) \ge s) = \operatorname{Proj}_R(\Gamma_1 \times T_2)(\Gamma_2 \times T_1)(R \times N)$$
,

où $N = \operatorname{Ens} \left(r \geq G(t_1, t_2) \geq s \right)$. Or, comme les fonctions $F_i(x)$ (i=1,2) sont projectives de la classe B_n , d'après le corollaire 1 du théorème 2 les images géométriques Γ_i sont projectifs de la classe B_n , et en autre part N est mesurable (B), d'où $(\Gamma_1 \times T_2)(\Gamma_2 \times T_1)(R \times N)$ est projectif de la classe B_n . Donc, $\operatorname{Ens} \left(r \geq G\left(F_1(x), F_2(x)\right) \geq s \right)$ est d'après (6) projectif de la classe A_n . De même, $\operatorname{Ens} \left(r < G\left(F_1(x), F_2(x)\right) \right)$ et $\operatorname{Ens} \left(G\left(F_1(x), F_2(x)\right) < s \right)$ sont projectifs de la classe A_n . Donc, $\operatorname{Ens} \left(r \geq G\left(F_1(x), F_2(x)\right) \geq s \right)$ est projectif de la classe B_n et par suite d'après le théorème 2, $G\left(F_1(x), F_2(x)\right)$ est projective de la classe B_n . C. Q. F. D.