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Mathematical Institute, Nagoya Imperial University.
(Comm. by T. TAKAGI, M.LA., Nov. 13, 1944.)

1. Introduction and the theorems. The purpose of the present
note is to give the following representation theorems of complex-valued
bounded continuous functions f(t) on (— o, ). The theorems may be
applied in Fourier analysis as well as in probability theory. Since the
proofs are carried through by virtue of the Plancherel’s duality
theorem, our results may be extended to the case of separable, locally
compact abelian groups instead of the infinite line (— oo, o),

Theorem 1. f(t) is positive definite® if and only if

1 = sin - ’
) son(z>=72=;§_ Fo| ™ |tz 0
n
(n=1y 2’ "') ’

and if (1) is satisfied, we have the representation® :

@ {f(t)=r e dv(d) with a monotone increasing, right-con-

tinuous bounded function v(1).

Theorem 2.2 f(t) is positive definite if and only if f(f) is expres-
sible as

00

3 { f (t)=lim$ 0u(t+8)ga(s)ds  uniformly in every finite inter-
NH0 J —00

val of ¢, where

@ sl .0 PR <A0).
Theorem 3. f(t) is representable in the form :

5) {f (t)=Soo etdv(2) with a complex-valued right-continuous
function v(2) of bounded variation,
if and only if

1) Cf. Proc. 20 (1944), 560-563.

2) Ff(—t)=f(t) and %f (ti—tk)&i6, = 0 for any integer n and for arbitrary complex
numbers ¢£.

3) S. Bochner: Vorlesungen iitber Fouriersche Integrale, Leipzig (1932), 76.

4) A. Khintchine: Bullt. de 'université d’état & Moscou, Sect. A, vol. 1, fasc. 5,
1-3.
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(6) i‘i?jl{l twf (t)( il—rl—ﬁ) e~ dt ‘}dl < oo,
n

Theorem 4. f(t) is representable in the form (5) if and only if
f(@t) is expressible as

@ {f (t)=lignj°j 0u(t+9)k.(s)ds  uniformly in every finite iter-

val of ¢, where
(8) { r | 9.(2) th:sc_o | ke(t) Pdt < @ constant < oo independent of
,n.5)

Theorem 5. Let (6) be satisfied, then, if we put,

1 (m sin—:;
_- s
) punW= | 0o,
n

Lgn Gnm(A)=¢n(1) exists. Concerning the representation (5) we have
A
the results: i) »(1) is absolutely continuous, viz. 'v(/l)=j— v (A)dA if
and only if
10 lim [~ | gu0) = gwld) | d1=0.

il) (1) is singular, viz. v'(1)=0 almost everywhere if and only if

(11) liln ¢a(A)=0  almost everywhere.
Theorem 6. i) Concerning the representation (5) we have the
result : (1) is absolutely continuous if and only if
(12) tim (10— gu(d) | d2=0.
iil) Concerning the representation (2) we have the result: (1) is
singular if
(13) li_zn ea(1)=0 almost everywhere .

2. Proofs of the the theorems.
Theorem 1. f(t)e* is positive definite with f(f) for any real s

5) The constant may be taken as the left hand side of (6).
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.t
sin — i
and hence f(¢ wt—@—=-2~$ ';f (t)e™ds is positive definite. In the same
_ﬁ n
manner we see that
sin LAY
(14) FO=FO|—"*
n
is also positive definite and hence
(15) | £u(®) | = £u(0)=£(0) .
Thus  fn(t)e Ly(— o, ), € Ly — o0, ). The continuous function
___1 ~1éd
(16) p)=—|" fiteat
is non-negative, since for any « <<f
8 ~3t
I R
an o= poar | e i)

=[" sonwar={" " f.obe+ohEus = 0

B
by the positive definite character of f.(t). That h(t)=—1—/-—1§_;_s~ e~ d A

a

=r h(t+s)h(s)ds follows from the Plancherel’s theorem. Next we will

prove that the non-negative function ¢,(1) is € Lj(— o0, ). If we put
as) n = puaz,
then we have from (16)

ga o dvn(l):l“r sindls—t) ¢ g
T s—t

-0

00

and hence
a1 da{j: (1) = At s
A Ao e

in particular (upon putting s=0), by (15).
H - -ma < sl £6)1=10.
0

Therefore the monotone increasing function v,(1) satisfies
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(19) Q)n(oo)—vn(—oo) éf(o),
and hence ¢,(2) € Ly(— o0, ).
Thus, by (16) and the Plancherel’s theorem, we have
(2y £ty={_edv.d).

By (19) and the Helly’s selection theorem, there exists a monotone
increasing right-continuous function »(2) with v()—v(— ) < f(0) and
a subsequence {v,.p(l)} such that

Ligvnp(l)=v(l) at the continuity points 2 of v().

Therefore we have, by taking Ii_g} le of (18,
T N>

f0=" an).
Theorem 2. Put

—_1 _l__ " 2 (1) pitd
gH)=11. m. 1/.Z?j_mwu,,(a)e da

(I.i. m.=limit in the mean)

and apply the Parseval form of the Plancherel’s theorem to (2). That
f(t) of the form (8) is positive definite may easily be verified.
Theorem 3 and 4 will be clear from the above proofs of theorem
1 and 2.
Theorem 5. We have, from (5) and (9),

P
sin —
N n_1 (™ aw-o___n
dnn)={" o) ﬁ;j_me n at}
n
and hence, if v(1’) is continuous at l+»:;, /1——11;,
“':Tn
(20) gud)=lim g )= "2 do()
m->co L 2
=" =1\
2o 1) s D)t

ii) The condition (11) thus becomes

11y lim 123 {v(l + —1—> - v(l - —]f~>} =0 almost everywhere, and

hence ii) is proved
i) The condition (10) becomes

(10)’ lim S'” | 5(1, m)—v(d, ) | dA=0.
n,n/>0) _
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Since v(1) is of bounded variation, we have

limv(2, n)=v'(2)= _‘lll;l_(lﬂ almost everywhere,

and hence (10) is equivalent to
10" limr lo(h, W) —v'(1) | dA=0.
>0l _

Let (10)” be satisfied, then for any a«<<f

N—>0

@1) 1imjﬂv(x, n)d/l==SB Y ()dA .

On the other hand,

Sjv(x, n)dr= gji <v</1 +%) - v(/l —-%))dl

=1;.S ?—(v(ﬂ+l)—v(a+l))dl.

3

659

Therefore, if « and 8 are continuity points of v(1), we have from (21)

v(ﬁ)——v(a)=gi YA .

Thus the condition (10) is sufficient.

The necessity of (10)” may be proved as follows From v(1)=

A
j ?v()d2 we have
L
e n)=ﬁ$ Y(X)dA .
2), 1

Since v'(1) € Ly — o0, ), we must have

NI,

oo A+_1_
Iim§ } n j V(W)X —v' () | dA=0,
! 24,1
which is (10)”.

Theorem 6. We have, from (1) and (5),

2

oo - sin —
@ =" af L] er

22
n

i)

yw—usl
n

AR 2o 2)) e
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ii) Since v(1) is monoton increasing we have, from (22) and
Fatou’s theorem

. 1 1t
lim 1 a2 L odo=v ).
g 2 ) Y Re=v )
This proves ii).

A
i) Let v(/l)=$_ v(A)dA, then we have, from (22),

2 2

1, (/1)=lj1 do- 20
ver U 20 4) e e ’

Hence, by v (1) € Li(— 0, ), we must have (12).
Next let (12) be satisfied, then the indefinite integrals

712=§ Pn(2)d2 n=1,2..)
T Y M

converges at every measurable set M on (— o, ). Hence, by Vitali-
2

Hahn-Saks’ theorem, the limit v(1)=lim 1~_§ ¢x(A)d2 must be abso-
n->o0 1/271' 0

lutely continuous.



