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On the fundamental differential equations of fiat
projective geometry.

By’ Kentaro YANO.
Mathematical Institute, Tokyo Imperial University.

(Comm. by S. KAgEfA, M.I.A., Oct. 12, 1945.)

1. I an adress given at the International Mathematical Congress at Bo-

logna,) Prof. 0. Veblen defined the geometry as the theory of an invariant. Ac-

cordhg to the ErlaTger Programm a geometry is the invariant theory of a group.

Acoording to the new conception of O. Veblen a geometry is the theory of invari-

ant.

0. Veblen shosved, in a lecture to the London lIathemati(ml Society,s that

the classical projective geometry may be regarded as the theory of an invariant

subject to ecrta-in restrictions. The theory of this invariant free from these rest-

fictions is the so-called generalized projective gcometry.

If we introduce a curvilinear coordinate system ()) in an n-dimensional

projetCdve space, the homogeneous projective coodinates Zx of the spa may be

expressed in the form

(1.1.) ZX=epf*(),
where e is an arbitrary laoor, p constants subjoo only to the oondiion tha

the detcrminan p formed with p is defferen from zero and finally fx( )
n/ 1 analytio functions of * su6h tlmt Che determinan

(i.,)

df" :).f 8f’

Diterentiating (1.1) and eliminating the constants, we find that any n +i

homogeneous proective coordinates Zx defined as functions of cuFilinear coordi-

nate "must satiny the differential equations

(1) O. Veblen: Differential invariants and geometry. Atti Congresso Internazionale
Bologna, 1, (1928), 181-189.

(2) O. Veblen: Generalized projective geometry. Jonrnal of the London Math. Soe.t
4 (i929), i4o-iem.

(3) Greek indices take the valuta on the range 0,1,2, n and Roman indices on

the range ,.2, n.
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(1.3) "Z Z

where F. are functions of $’, , ..., ’ (rely and satisfy tho following conditions

(1.4)

The condition (1.4:) follows from the special form of (1.1). The last two
are integrnElity condition,s of the differential equations (1.3).

The equations (1.3) ar the so-called fundaxnental differenfi.-d equations of

fiat. projectiv geometry.

As we may multiply the homogeneous projective coordinates by mr factor

and may change the eurvilimar coordinate system to any other one the equa-

tions (1.3) mu be unaltered in the form by the trmmformations

e-’,...,

By theso transformtibns, the functions F are transformed into/’, where

(1.8) \

The conditions (1.4), (1.5) and (1.6) are invarian by these transfor-

mations.

As the transformation law (1.8) is.transitive, we may define an invariant

whose omponent in the coordinate system (x) ar ir’, and whose omponcnt

/., in the coordinate system ($x) are given by (1.8). This invariant is oalled

the projective connection:

The theory of an arbitrary projective connection, whose components are

functions of n curvilinear coordinates and satisfy the conditions (1.4=) and (1.5),
is a generalized projective geometry. If the components of a projective connec-

tion satisfy the conditions (1.4), (1.5) and (1.6), the theory of this projective

connection is flat proective geometry.

It is to be noticed that, if the components satisfy (1.4=), (1.5) and (1.6),
t](e components are functions of $, $0.,..., . only. In fact, we have, from

(1.6),

B.o- O O

from which
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2. Let u consider (X.3) the fundamenfal differengial equag;.ons of

n + 1 dimersional affine space A,+I and F as the componenf of affine oooco-

tion of the space.

If there e.,rists, in A+, a ooordiuate sysm with repect o which the compo-
nengs F of the affine oonneegion satisfy the oonditions (1.4:), (1.5) and

then the affine space fl+, referred to this coordinate system, may be take to

represent the projective space

Following J. It. C. Whitehead,) we shall denote mW coordinato sysm for

,40,+ by K,,+ and a K.+ which is a representation for P,, by
Let

’)
be a set of n+ 1 independent solutions of the differetial equations. The fact

t.hat tim solutions are of the form (2.1) is ensured by the conditions (1.4). If

we consider the equations (1.3) as the fundamental differential equatior of the

(n+ 1)-dimensional flat afline space A,,+ and/’ as the components of the aiine

eomeetion, tim lutions Zx given by (2.1) are rectilinear affine eoodinafes of the

space, and with respeet to this eoordimte system, all the components of the af-

fir eomeetion vanish.

Thus, the rectilinear coordinate system (Zz) is an K+t for the afne space,

but it is not. a representation for the projective speee P0,, that is, i is not an

Tiffs is due to the feel. that we are using the non-homogeneous coordinate system

but not the homogeneous one.

To obtaix an R,, we put

(2.2) {z--log Z",
z Z /Z,

or

(2.3)

The transformation of coordinates $*-->z" is of the form (1.7). If we de-

note by P
easi verifit,

4) J.H.C. Whitehead: On a class of projectively flat afline convections. Proc. London
Math. Soc., 32 (1931), 93--114; The representation of projective spaces. Annals of Math.,
32 (1931), 327-360.
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Thus the coordinate system (z) is an R.
If we regard Zx as a rectilinear coordinetes in A.+t, the relation between

(Z"^) and (zx) is given by

(2.5) lz-+,
lZ’=g’.

Thus the points of Po,, which are represented, in A,,/1, by the straight lines

through the origin, are represented, in (z’), by the curves of parametres z.
3. In the flat case, the finite equations of the paths, say, of the straight

lines are given by

(3.) z*:A - Bt,
whero Ax and B are homogeneous coordinates of two pofits on the straight line.

Differontiating this equation twioe with respec m and taking tmoount of the

fun&zmental differential equations, we find

(3.2) d"e---- +F, d0’ g$__0
d dt dt

as the differential equations of the patls.

Putting 1:0 and ---i respeotively in (3.2), we have

in virtue of the relations T’--Fo=8. If we put

dt "

or

dt(3.4) ] -d-s
we have, from (3.3) (i),

ds ds

and, from (3.3) (it),

(3.6) d + d$ d$*
--0,

ds ds ds

where t, s} is the Schwarzian derivative of t with xespe to s, s being an affine

parameter on paths. Thus the parameter t is a projeotiva one.

If we take the coordinate system (z) defined in the last Paragraph, the equa-

tions (3.5) and (3.6) gives
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(.7) t.--

and

(3.8) z’=a’s+b’

respectively, where a, B, % ;, a mM b are eonstantu

The parameter t introduced in the equation of path (3.1)is a projective

If we u an arbitrary parameter " on path, the finite equation of the pathsOeo

is

Differentiating t t tion with ro -, d eliting n-

nts fromt uatiom, we find the erenti tiom oI tho form

(3.o) z dZ--a+BZ.
d+

The homogeou coordinates Zz being functions of curvilinear coordinates

we have, from (3.10),

(3.11) f"a + F,, dO’ d$" dx

d dr d- d-

in virtue of the fundamental differential equatior and of the relation Zx= dZx"
The equations (3.11) are the most general eqtatiors of the paths.

If we regard Zx or Sx as the coordinates of points in an (’n + 1)-dimensional
affine spaoe A.+, the equations (3.1) are tho of strdght lines passing by

points A and Bx. The points Ax and B of projective space P being represen-

ted by a straight lines in A+ joining these lfints to origin, we ma say that taho

taths in P are represented by a plane in A+, containing three points A’,
and the origin.

Thus, the paths in P,, being represented by planes passing through the ori-

gila in A+, to represent the paths, we may take arbitrary curves on those planes

passirtg through the origin. The equations (3.11) are equations of such curves.

Indd, the equations show that, if we regard x. as coordinate of points in an

(n+1)-dimensional affine spaoe A+, the oseulating plane of this ourvo contains

ahvays the vector $0x. The vector whoso oomponents are 80x being tangent to the

-eurves or rays, it passes throdgh always the origin.

4:. In Paragraph 1, we have assttmed the homogeneous projeotive coordi-

nates Zx of an n-dimensional projective space to be of the form (1.1), $ and

being an arbitrary faotor and ourvilinear ooordinates of the spaoe respeotively.

Let tt now introduce, in an n-dimensional projective spaoe P,,, a system of
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curvilinear homogeneous coordinates () and assume that the homogeneous pro-

jective coordinates Z" of the space are expressed in the form

(4.1) ’-- " ),
where p are constants subject only to the conditions that the determinant IPI
formed with them is different from zero and PX(x) are n-F1 homogeneous

functions of degree /1 such that

a.F’ a.F"

01 OF; OF
dx" Ox" ""’"

Differentiating (4.1) and eliminating the constants p, we find the so-called

fundamental differential equations

(4.3) d"Z =H, aZ
mdm ..v

dxx

which any n+ 1 homogeneous projective coordinates Z dened as the functions

of n+ 1 cnrvilinear homogeneous coordinates xx must satisfy.

The functions Z being homogeneous of degree + 1 with respect to a, the

coetBcients H* are homogeneous mnctions of the degree ---1 with respect to x%

The functions Z being homogeneous of degree + 1, the fudctions
dz- are

homogeneous of degree 0, so tlmt if we multiply (4.3) by * and sum up for the

inlex , we find

O--
, 8Z--H.xx
8x

from which we obtain

the n+ 1 points being linearly independent in virtue of (4.2).
The integrability conditions of the differen|al equations (.3) are

(4.7) .,,.,,,, 1I,,,,II,,, .----0.

As we may change the curvilinear homogeneous coordinates to aro" other

one the equations (4.3) muse be unaltered in the form by the trmsformation
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wl,re i:(x) are homogeneot_ functions of degree one with respect .to their argu-

ments.

By hese transformations,_ the ftioH are trfo in H fol-

lowing e foae of thee form (l.8),

H-dx- dE" d$. dd

The contions (4.5), (.6)and (4.7) are invarit by the transform-

marion.

As we may mtip homogeneous projtive coornates by " racer, t
uatiom (.3) must invariant o by the trformation

(4.10) ’Z=Z or ’W=z*,
where the faor a(x) is a honaogeaeo function of degr ro with resot to

the x.
It 1 emi n that, by this trformation, the fmegiom H are

traorm into Hx foowi the formae

(:.ll)
where

The conditions (4:.5), (4:.6) and (4:.7) are also invariant under such trans-

formation of coordinates.

As the transformation laws (4:.9) and (4.11) of// are transitive, we may

define, as in Paragraph 1, an invariant whose compononts in the coordinate

system (x) are// and whose components // and t//x in other coordinate

syems (a) and (tx*) are given by (4.9) and (4:.11) resistively. This in-

variant may be called the projective connection.

Thus, a generalized projective geometry mv be defined as the theory of an

arbitrary projective connection, whose components are functions of t+1 curvili-

near homogeneous coordinates and satisfy the conditions (4.5) and (4.6). If the

components of a projective connection satisfy the conditions (4.5), (4:.6) and

(4:.7), the theory of this projective connection is fla projective geometry.

It is to be noticed that, if the components satisfy (4:.5), (4:.6) and (,J=.7),

the components are homogeneous functions of degree --1 with respect to x*.

In fact, we have, from (4:.7)

5) I. A. Schouten and I. Haantjes" Zur allgemeinen projekttven Difierentialgeometrie,
Comp. Math., 3 (1936), 1-51.
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d 7 ]HH. =0,

from which

5. In this Paragraph; we shall study the relations hen two compo-

nents of the projective connection ir’ and I , one introduced in 1 and the

other in the last Paraoph.

The non-homogeneous curvilinear coordinates and the homogeneous cur-

vilinear coordinates z being both coordinate systems for an N-dimensional pro-

jective space P, we must have the equations o the form

(5.1) {--log p(z)’

between these ooordinates where the functionsC] andC] are homogeneou

ot degree one and zero respectively with respect to z. Thus, if we put

0 logp
L:p and ff.. d

dzx d

vie hav, e

As we have

(5.4)

and ,r,’=0.

substituting the fnndamental equations (1.3) and (4.3) in (5.40, we have

Z Ii OZ

in virtue of the equation (3.5).

The + 1 points Z and dZ being independent, we have from the above

equation
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(5.5) },

and

If we denoteby

the inverse metrix of

E2.zL ,, +E+
dx"

we can ,solve the equations (5.5) and (5.6) with rest to k mad /’j resoee-

tively, say,

k dx’

6. In ts 1 Parraph, we sh invao fforenti uatiom
oft in the where we are us ghe eurinear homen erna
The uation oft

Z +
we ve the fferenti tions

gx dZ +$z

from which, we find

d:" &" d"
--a

d"
+

by virtue of the fundamental equation

As we have already stated, these equations give in an (n+ 1)-dimensional

representation, a curve whose osculating plane passes always by" the origin and

he,nee a curve on a plane passing through the origin.

Thus the transformation (4.11) may be called the subprojefive transforma-

tion69 of the affine eonnecfioru

6) K. Yano" Subpzojeet|ve tranaformationa, subprojeetive spaces and subpmjeetive
collineationa. Pine., 0 (1944), 701-705.


