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60. On the fundamental differential equations of flat
projective geometry.

By Kentaro YANO.
Mathemarical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.I.A., Oct. 12, 1945.)

§ 1. In an adress given at the International Mathematical Congress at Bo-
logna,” Prof. O. Veblen defined the geometry as the theory of an invariant. Ac-
cording to the Erlanger Programm a geometry is the invariant theory of a group.
According to the new conception of . Veblen a geometry is the theory of invari-
ant.

O. Veblen showed, in a lecturc to the London Mathematical Society, that
the classical projective geometry may be regarded as the theory of an invariant
subject to ccrtain restrictions. The theory of this invariant free from these rest-
rictions is the so-called generalized projective geometry.

If we introduce a curvilinear coordinate system (£°)® in an n-dimensional
projective space, the homogeneous projective coodinates Z* of the space may be
expressed in the form

(11) D= phH(E),
where ¢* is an arbitrary factor, p/ constants subject only to the condition that
the determinant | p} . formed with p} is deflerent from zero and finally f(€)
n+ 1 analytic functions of & such that the determinant
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Differentiating (1.1) and eliminating the constants, we find that any n+1
homogeneous projective coordinates Z* defined as funetions of curvilinear coordi-
nates & ' must satisfy the differential equations

(1) O. Veblen: Differential invariants and geometry. Atti Congresso Internazionale
Bologna, 1, (1928), 181-189.

(2) O. Veblen: Generalized projective geometry. Jonrnal of the London Math. Soe.,
4 (1929), 140-160.

(3) Greek indices take the values on the range 0,1,2, ..., n and Roman indices on
the range 1,2, ..., n.
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where I'}, are functions of &', &, ..., £” only and satisfy the following conditions
(1.4) rgv:l-'%o:aa)
(L.5) ry=rij,

23 28
(L6) Bi.= d;;:“ - daI; b4 P2 — [T, =0.

The condition (1.4) follows from the special form of (1.1). The last two
are integrability conditions of the differential equations (1.3).

The cquations (1.3) are the so-called fundamental differential equations of
flat projective geometry.

As we may multiply the homogeneous projective coordinates by any factor
and may change the curvilinear coordinate system to any other one, the equa-
tions (1.3) must be unaltered in the form by the transformations

.7) {?=5" +log p(&, &,.., £,

F=8(&, &,..., &)

By these transformations, the functions I'}, are transformed into T’,ﬁy, where

= dE* ( JEP QET J°€*
a8)  Th=S2(SE 7_:71";, +Ta~a@_)‘

The conditions (1.4), (1.5) and (1.6) are invariant by these transfor-
mations.

As the transformation law (1.8) is.transitive, we may define an invariant
whose components in the coordinate system (&) are I'y, and whose compoucnts
I, in the coordinate system (&) are given by (1.8). This invariant is called
the projective connections

The theory of an arbitrary projective connection, whose components are
functions of n curvilinear coordinates and satisfy the conditions (1.4) and (1.5),
is a generalized projective geometry. If the components of a projective connec-
tion satisfy the conditions (1.4), (1.5) and (1.6), the theory of this projective
conneetion is flat projective geometry.

It is to be noticed that, if the components satisfy (1.4), (1.5) and (1.6),
these components are functions of &', &°,..., §* only. In fact, we have, from
(1.63,
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from which
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§2. Let us consider (1.3) as the fundamenfal differential equations of an
n+1 dimensional affine space A, and I3, as the components of affine coonce-
tion of the space.

If there exists, in A,.1, a coordinate system with repect to which the compo-
nents I'}, of the affine connection satisfy the conditions (1.4), (1.5) and (1.6),
then the affine space A,,1, referred to this coordinate system, may be taken to
represent the projective space P,.

Following J. H. C. Whitehead,” we shall denote any coordinate system for
A1 by K4y and a K,,, which is a representation for P, by R,.

Let

(2.1) 2P =" (&)
be a set of n+1 independent solutions of the differential equations. The fact
that the solutions are of the form (2.1) is ensured by the conditions (1.4). 1If
we consider the equations (1.3) as the fundamental difierential equations of the
(n+1)~-dimensional flat afline space A4,,,; and I'), as the components of the affine
connection, the splutions Z* given by (2.1) are rectilinear affine coodinates of the
space, and with respset to this coordinate system, all the components of the af-
fine connection vanish,

Thus, the rectilinear coordinate system (Z*) is an K, for the affine space,
but it is not a representation for the projective spece P, that is, it is not an R,
This is due to the fact that we are using the non-homogeneous coordinate system
but not the homogeneous one.

To obtain an R,,, we put

(2.2) {z":log AN

=77,
or
(2.3) {z"z&"r}-logf"(f‘, &y &),
Z=f{(&).

The transformation of coordinates £*—>z* is of the form (1.7). If we de-
note by P}, the components of the projective eonnection, we have, as it may be
easily verified,

(2-4) .P?,ly = Pto :85 and P?,"/, = 0.

4) J.H.C. Whitehead: On a class of projectively flat affine conpections. Proc. London

Math. Soc., 32 (1931), 93-114; The representation of projective spaces. Annals of Math.,
32 (1931), 327-360.
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Thus the coordinate system (2*) is an R,

if we regard Z* as a rectilinear coordinetes in 4.,.s, the relation between
(Z*) and (£) is given by

(2.5) { 2=

Z' =4

Thus the points of P,, which are represented, in 4.1, by the straight lines
through the origin, are represented, in (z*), by the curves of parametres 2.

§3. 1In the flat case, the finite equations of the paths, say, of the straight
lines are given by

(3.1) Z*=A*+ BN,
where A* and B* are homogeneous coordinates of two points on the straight line.
Differentiating this equation twice with respect to ¢ and taking account of the
fundamental differential equations, we find

e x A& d&

32 Ty
as the differential equations of the paths.

Putting =0 and 2==1 respectively in (3.2), we have

=0

. e das° d&i  dg*
(i) df ( dt ) + % dt dt =0,
33 & & der o de d
, g dg gt , de df _,
(it) de + Yt dt +a dt  dt

in virtue of the relations I'jy=1"23=8 If we put

g & (dt :
2 P —_—
dt ds® ds )
or
1 dt
34 E=—-log—,
(3.4) 2 8 ds
we have, from (3.3) (i),
j k
(3.5) {¢, 3}‘—"'—2[3" de? df ’
ds ds
and, from (3.3) (ii),
Q28 d&i dg*
.6 T =0
(3.6) ds* t ds ds ’

where {¢, s} is the Schwarzian derivative of ¢ with respect to s, s being an affine
parameter on paths. Thus the parameter ¢ is a projective one.

1If we take the coordinate system (2*) defined in the last Paragraph, the equa-
tions {3.5) and (3.6) gives
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3.7 — BB

&7 vs+8
and

(3.8) F=a's+ b

respectively, where a, 8, 7, 8, a* and b are constants.

The parameter ¢ introduced in the equation of path (3.1) is a projective
one. If we use an arbitrary parameter 1 on path, the finite equation of the paths
is

(3.9) 2= A*u(r) + B*o(r).

Differentiating twice this equation with respect to 7, and eliminating con-
stants from these equations, we find the differential equations of the form

(810) 2 _ 97

= dad— ZAO
w e TR

The homogeous coordinates Z* being functions of curvilinear coordinates £,
we have, from (3.10),

ae a d&* d& d&*
3.11 + 17, = + 88}
( ) dr® Wdr dr “ dr
in virtue of the fundamental differential equations and of the relation Z*>=— %?

The equations (3.11) are the most general equations of the paths,

1f we regard Z* or £* as the coordinates of points in an (% +1)-dimensional
affine space 4,1, the equations (3.1) are those of straight lines passing by two
points A* and B> The points 4* and B* of projective space P, being represen-
ted by a straight lines in 4, joining these points to origin, we may say that the
paths in P, are represented by a plane in A4,,, containing three points A*, B*
and the origin.

Thus, the paths in P, being represented by planes passing through the ori-
gin in A4,,., to represent the paths, we may take arbitrary curves on these planes
passing through the origin. The equations (3.11) are equations of such curves.
Indeed, the equations show that, if we regard &* as coordinate of points in an
(n+1)-dimensional affine space 4,,,1, the osculating plane of this curve contains
always the vector 8. The vector whose components are 8 being tangent to the
£°-curves or rays, it passes through always the origin.

84. 1In Paragraph 1, we have assumed the homogeneous projective coordi-
nates Z* of an n-dimensional projective space to be of the form (1.1), & and &*
being an arbitrary factor and curvilinear coordinates of the space respectively.

Let us now introduce, in an n-dimensional projective space P,, a system of
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curvilinear homogeneous coordinates (#*) and assume that the homogeneous pro-
jective coordinates Z* of the space are expressed in the form

(41) Z'=ppF*(z"),
where p) are constants subject only to the conditions that the determinant | p}. |
formed with them is different from zero and F*(2z*) are n+1 homogeneous
funections of degree +1 such that

oF° JIF I
a2’ a2 77 97
OF  JF IF"
(4.2, dr . a7 7 oz 0.
IF° JF" ) o
Cdxr T oz o

Differentiating (4.1) and eliminating the constants p}, we find the so-called
fundamental differential equations
Iz a7z
4.3 =1II)
(43 d2'oz’ W ax’
which any 7 +1 homogeneous projective coordinates Z* defined as the functions
of n+1 curvilinear homogeneous coordinates z* must satisfy.

The functions Z* being homogeneous of degree +1 with respect to z°, the
coefficients IT}, are homogeneous tunctions of the degree —1 with respeet to 2%

The functions Z* being homogeneous of degree + 1, the funictions 3% are
z

homogeneous of degree 0, so that if we multiply (4.3) by 2* and sum up for the
index v, we find

0=11 ,’,‘_V;GV—Z?Z—,
from which we obtain
(4.5) 112 =0,
the n+ 1 points being linearly independent in virtue of (4.2).
The integrability conditions of the differential equations (4.3) are
(4-6) ;7:.\: =II %
&7 @y =M _ O | prepy g1z m, =o0.
Iz” Jz’
As we may change the curvilinear homogeneous coordinates to any other
one, the equations (4.3) must be unaltered in the form by the trangformation

(4.8) 2 =zX2", z's..., 2°),
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where 2*(x) are homogeneous functions of degree one with respeet to their argu-
ments.

By these transformations, the functions IT2, are transformed into 12, fol-
lowing the formulae of the same form as (1.8),

- 0% [ 0x® Jx¥ Iz
49 I, = ( v 9% qrs +—).
(49 W ozt \ oz o7 O 07'd7’

The conditions (4.5), (4.6) and (4.7) are invariant by these transform-
mations.

As we may multiply homogencous projective coordinates by any factor, the
equations (4.3) must be invariant also by the transformation

(4.10) 17 =07 or 'B*=q2,
where the factor o(2) is a homogeneous function of degree zero with respect to
the 2%

It will be easily seen that, by this transformation, the functions II}, are
transformed into "I}, following the formulae

(4.11) 1 =1I% + 8oy + 8o, + o,
where
(412) ay =_d%gvo'_ and opy= 3:: —ol}y—ouow

The conditions (4.5), (4.6) and (4.7) are also invariant under such trans-
formation of coordinates.

As the transformation laws (4.9) and (4.11) of IT}, are transitive, we may
define, as in Paragraph 1, an invariant whose compononts in the coordinate
system () are [T}, and whose components 172, and “II}y in other coordinate
systems (Z*) and (“z*) are given by (4.9) and (4.11) respectively. This in-
variant may be called the projective connection.

Thus, a generalized projective geometry” may be defined as the theory of an
arbitrary projective connection, whose components are functions of n+1 curvili-
near homogeneous coordinates and satisfy the conditions (4.5) and (4.6). If the
components of a projective connection satisfy the conditions (4.5), (4.6) and
(4.7), the theory of this projective connection is flat projective geometry.

1t is to be noticed that, if the components satisfy (4.5), (4.6) and (4.7),
these cornponents are homogeneous functions of degree —1 with respect to 2%
In fact, we have, from (4.7)

5) 1. A. Schouten and J. Haantjes: Zur allgemeinen projektiven Differentialgeometrie,
Comp. Matb., 3 (1936), 1-51.
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A A
-Qf‘v-\cmxw =( ddlzzv - dji‘:w +H :vﬂ ﬁw ~11 :«:II ﬁv)xw =0,

from which
e
§ 5. In this Paragraph; we shall study the relations between two compo-
nents of the projective connection I';, and II},, one introduced in § 1 and the
other in the last Paragraph.

2
—HF\P

The non-homogeneous curvilinear coordinates £ and the homogeneous cur-
vilinear coordinates z* being both coordinate systems for an n-dimensional pro-
jective space P,, we must have the equations of the form

(51 {9=loe o2,

§=8(a*)
between these coordinates where the functions £°(2*) and §*(2*) are homogeneous
of degree one and zero respectively with respect to z*. Thus, if we put

o0 P MG EaETE
we have

(52) pr*=1 and EHz*=0.
As we have

- 47 _ 2z

3 puZ+ ER,

(>:3) o7t 08’

. *Z dp 07

5.4 L3 Z+FE T Pu——r
G = or Al N ] aef T

+Ej Fy dzz + dEp dZ

g 9z’ 9&’
substituting the fundamental equations (1.3) and (4.3) in (5.4), we have

oI Z+ B IT, jg

% BBz

"Pﬂ s 2+ pupn 2+ Byp 28 = Z \ pp 2% o

9z , JE, 0%
B, BT w
+ wow T Ton  oF

in virtue of the equation (3.5).

The n+1 points Z and 3—5— being independent, we have from the above

equation
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(5.5) BLBA =~ (28— pulli—pop. ),

and
(5.6) B ESMy=— (—-ziji'ﬁ— —ELI + Eiypy + Ef»m)-
If we denote by

()
)

23

we can solve the equations (5.5) and (5.6) with respect to '} and I respec-
tively, say,

the inverse metrix of

57 == BP0 il
(5:8) I~ BpE (20— BSII},).

§ 6. 1In this last Paragraph, we shall investigate the differential equations
of paths in the ease where we are using the curvilinear homogeneous coordinates.
The equation of paths being

20 = Au(r) + Bo(r),
we have the differential equations

&2 Az N
= +8Z
dn? * dr BZ,
from which, we find
2,2 . N
M(l"a_;,_ + I dz* dz —a dz + Bz

dr’ dr  dr dr
by virtue of the fandamental equations.

As we have alrcady stated, these equations give in an (% +1)-dimensional
representation, a curve whose osculating plane passes always by the origin and
hence a curve on a plane passing through the origin.

Thus the transformation (4.11) may be called the subprojective transforma-
tion® of the affine connection.

6) K. Yano: Subprojective tramsformations, subprojective spaces and subprojective
collineations. Proc., 20 (1944), 701-705.



