57. A note on generalized convex functions.

By Sitiro HANAI.

Nagaoka Technical College. (Comm. by S. KAKEYA, M.I.A., July 12, 1945.)

§ 1. We are concerned with real finite functions f(x) defined on a closed interval $a \leq x \leq b$. E. F. Beckenbach¹ has given a generalization of the notion of a convex function as follows.

Let $F(x; a, \beta)$ be a two-parameter family of real finite functions defined on $a \leq x \leq b$ and satisfying the following conditions:

(1) each $F(x; \alpha, \beta)$ is a continuous function of x;

(2) there is a unique member of the family which, at arbitrary x_1, x_2 satisfying $a \leq x_1 < x_2 \leq b$, takes on arbitrary values y_1, y_2 .

The members of the family $F(x; a, \beta)$ are denoted simply by F(x), individual members being distinguished by subscripts. In particular, $F_{ij}(x)$ denotes the member satisfying $F_{ij}(x_i) = f(x_i)$, $F_{ij}(x_j) = f(x_j)$, $(a \leq x_i < x_j \leq b)$.

We call a function f(x) to be convex in Beckenbach's sense if

$$f(x) \leq F_{12}(x)$$

for all x_1, x_2, x , with $a \leq x_1 < x < x_2 \leq b$.

Now let the family $F(x; \alpha, \beta)$ satisfy the following condition (3) in addition to (1) and (2):

(3) let F(x), F'(x) be the members of the family passing through arbitrary points (x_1, y_1) , (x_2, y_2) ; (x_1, y'_1) , (x_2, y'_2) respectively, then, the member $F_{\lambda}(x)(\lambda > 0)$ which passes through $(x_1, \lambda y_1)$, $(x_2, \lambda y_2)$ is not less than $\lambda F(x)$ for $a \leq x_1 < x < x_2 \leq b$, and the member passing through $(x_1, y_1 + y'_1)$, $(x_2, y_2 + y'_2)$ is not less than F(x) + F'(x) for $a \leq x_1 < x < x_2 \leq b$.

Definition. A function f(x) is called a generalized convex function if the family $F(x; a, \beta)$ satisfies the condition (1), (2), and (3), and $f(x) \leq F_{12}(x)$ for all x_1, x_2, x , with $a \leq x_1 < x < x_2 \leq b$.

For instance, (a) when $F(x; a, \beta) \equiv ax + \beta$, then $F(x; a, \beta)$ satisfies the conditions (1), (2), and (3) and therefore the convex function in the usual sense is a generalized convex function, (b) when $F(x; a, \beta) \equiv a \sin \rho x + \beta \cos \rho x$ where ρ is a constant and $b-a < \frac{\pi}{\rho}$, then $F(x; a, \beta)$ satisfies (1), (2), and (3) and

¹⁾ E. F. Beckenbach; Generalized convex functions, Bull. Amer. Math. Soc. Vol. 43 (1937), 363-371.

therefore the Lindelöf-Phragmén's function² h(x) is a generalized convex function.

The purpose of the present paper is to show that the set of all generalized convex functions is a semi-vector lattice³⁾ and the set of all convex functions in Beckenbach's sense is not always a semi-vector lattice.

§ 2. It was shown by E. F. Beckenbach⁴ that the family $F(x;\alpha,\beta)$ satisfying the conditions (1), (2) and the convex functions in Beckenbach's sense have several properties analogous to those of the family $F(x;\alpha,\beta) \equiv ax + \beta$ and the convex functions in the usual sense. These properties will be used to establish the following theorem.

Theorem 1. The set of all generalized convex functions is a semi-vector lattice.

Proof. Let F denote the set of all generalized convex functions and let $f(x) \in F$, $g(x) \in F$. Then there exist two members $F_{12}(x)$, $F'_{12}(x)$ of the family $F(x;\alpha,\beta)$ such that

$$f(x) \leq F_{12}(x), g(x) \leq F_{12}(x)$$

for all x_1, x_2, x , with $a \leq x_1 < x < x_2 \leq b$. Then we have

$$f(x) + g(x) \leq F_{12}(x) + F'_{12}(x)$$

for all x_1, x_2, x , with $a \leq x_1 < x < x_2 \leq b$.

On the other hand, it follows from (3) that there is a unique member $F_{12}''(x)$ of the family $F(x;\alpha,\beta)$ such that $F_{12}(x) + F_{12}'(x) \leq F_{12}''(x)$ for all x_1, x_2, x_3 , with $a \leq x_1 < x < x_2 \leq b$ and $F_{12}'(x_1) = f(x_1) + g(x_1), F_{12}''(x_2) = f(x_2) + g(x_2)$. Therefore $f(x) + g(x) \in F$.

From (3), it is easy to see that $\lambda f(x) \in F$ for $\lambda > 0$.

Conequently, the set F is a semi-linear space.

In order to prove that the set F forms a lattice, it is sufficient to show that an arbitrary bounded subset E of elements of the set F has the supremum $U(x) \equiv l.u.b. f(x)$.

Let $P_1(x_1, y_1)$, $P_2(x_2, y_2)$ be arbitrary two points on the curve y=U(x) such that $x_1 < x_2$, and let $P_0(x_0, y_0)$ be any point on the arc of y=U(x) between the points P_1 , P_2 .

We need only consider the following two cases, on account of being able to prove

²⁾ 辻正次; 解析雜論 (共立社), 20 頁.

³⁾ G. Birkhoff; Lattice Theory, P. 107, there it is shown that the set of all convex functions in the usual sense forms a semi-vector lattice.

⁴⁾ E. F. Beckenbach; loc. cit.

similarly in the other cases.

Case 1. All the points P_0 , P_1 , P_2 lie on the curves of elements of E. Let $P'_2(x_2, y'_2)$ be the point of intersection of an element of E passing through the point P_0 with the line $x = x_2$. Then $y'_2 \leq y_2$.

Therefore we have

$$F_{02}(x) \leq F_{02}(x)$$
 for all x with $x_0 \leq x \leq x_2$,⁵⁰

where $F_{02}(x)$, $F_{02}(x)$ donote the members of the family $F(x;\alpha,\beta)$ which pass through the points P_0 , P'_2 ; P_0 , P_2 respectively.

On the other hand, since
$$F_{02}(x_1) < y_1^{6}$$
 and $F_{12}(x_2) = F_{02}(x_2)$, we have
 $F_{02}(x) < F_{12}(x)$ for all x with $x_1 \leq x \leq x_2$,

where $F_{12}(x)$ denotes the member of the family $F(x;\alpha,\beta)$ passing through the points P_1 , P.

Therefore we have

$$F_{\mathfrak{n}}(x) < F_{\mathfrak{l}}(x)$$
 for all x with $x_0 \leq x \leq x_2$.

Consequently we get

$$U(x_0) = F'_{02}(x_0) < F_{12}(x_0).$$

Since P_{θ} is an arbitrary point on the arc of y=U(x) between the points P_1 , P_2 , we have

$$U(x) < F_{12}(x)$$
 for all x with $x_1 \leq x \leq x_2$.

Hence we have $U(x) \in F$.

Case 2. Both of the points P_1 , P_2 do not lie on the curves of elements of E.

Let $\{P_{1n}\}$, $\{P_{2n}\}$ be monotone increasing sequences of points of intersection of the lines $x=x_1$, $x=x_2$ with elements of E respectively such that $P_{1n} \rightarrow P_1$, $P_{2n} \rightarrow P_2$, as $n \rightarrow \infty$.

Then we have

$$F_{12n}(x) \rightarrow F_{12}(x) \text{ as } n \rightarrow \infty,^{\mathcal{D}}$$

where $F_{12n}(x)$ denote the members of $F(x; \alpha, \beta)$ passing through the points P_{1n}, P_{2n} .

Therefore, in virtue of the monotone increase of $\{P_{1n}\}$, $\{P_{2n}\}$, and by the same argument as in Case 1, we have

 $U(x) < F_{12}(x)$ for all x with $x_1 \leq x \leq x_2$.

Therefore in this case we have $U(x) \in F$.

From the proofs of the above two cases and the fact that F is a semi-linear space, we get the theorem.

Concerning the condition (3), we have the following theorem.

^{5), 6) 7)} E. F. Beckenbach; loc. cit.

No. 21.]

Theorem 2. The set of all convex functions in Beckenbach's sense is not always a semi-vector lattice.

Proof. For the proof, we consider an example which is not a semi-vector lattice.

Let $F(x;\alpha,\beta) \equiv -x^2 + \alpha x + \beta$ defined on the closed interval $-1 \leq x \leq 1$, then it is easy to see that the family $F(x;\alpha,\beta)$ satisfies (1), (2), but does not satisfy (3).

It is evident that the member $F_{12}(x)$ of the family $F(x;\alpha,\beta)$ passing through the points $P_1(-1,0)$, $P_2(1,0)$ is $-x^2+1$ and $F_{12}(x)$ is itself a convex function in Beckenbach's sense.

Since $\lambda F_{12}(x)$ where $\lambda > 1$ is greater than $F_{12}(x)$ which is the member of the family $F(x;\alpha,\beta)$ passing through P_1 , P_2 , so that $\lambda F_{12}(x)$ is not a convex function in Beckendach's sense.

Therefore the set of all convex functions in Bekenbach's sense corresponding to $F(x; a, \beta) \equiv -x^2 + ax + \beta$ is not a semi-linear space.

Thus the proof of the theorem is completed.

Remark. From the proof of Theorem 1, we see that the set of all convex functions-in Beckenbach's sense is a conditionally complete lattice.