50. Zur konformen Abbildung zweifach zusammen hängender Gebiete, III.

Von Yûsaku KOMATU.

Institut für Mathematik, Kaiserliche Universität zu Tokyo. (C mm. by S. KAKEYA, M.I.A., June, 12, 1945.)

B. Grenzübergang zum Falle des einfachen Zusammenhanges.

Wir haben in den früheren Noten¹⁾ explizite Gestalten verschiedener spezieller Abbildungsfunktionen vom konzentrischen Kreisringe R: q < |z| < 1 gewonnen. Es liegt nahe zu erwarten, daß beim Grenzübergange $q \to 0$ solche Abbildungsfunktionen vom Grundgebiete R in die entsprechenden Funktionen vom Einheitskreise |z| < 1 übergehen. Wir sollen dies zwar in dieser Note beispielsweise insbesondere für die Funktionen $\omega_k(z; z_\infty, z_0)$ und $\omega_r(z; z_\infty, z_0)$ näher untersuchen.

1. Die Funktion $\omega_k(z; z_{\infty}, z_0)$.

Wie in I, $\bf A$, § 3 oder § 4 gezeigt wurde, läßt sich die die Kreisbogenschlitzabbildung von R vermittelnde Funktion durch

$$egin{aligned} oldsymbol{\omega}_k(z; z_\infty, z_0) &= rac{i}{z_\infty} \left(rac{z}{z_\infty}
ight)^{rac{2\eta_1}{\pi} - \lg\left|rac{z_\infty}{z_0}
ight|} \ & imes rac{\sigmaig(i\lgrac{z}{z_0}ig)\sigma(i\lgar{z}_\infty z)\sigma(i\lgar{z}_0 z_\infty)}{\sigmaig(i\lgrac{z}{z_\infty}ig)\sigmaig(i\lgrac{z_\infty}{z_0}ig)\sigma(i\lg|z_\infty|^2)\sigma(i\lgar{z}_0 z)} \end{aligned}$$

liefern. Für σ -Funktionen gilt aber bekanntlich im allgemeinen bei $q \to 0$ die Limesrelation

$$\sigma(i \lg x) \rightarrow -i \exp\left(\frac{1}{24} \lg^2 x\right) \cdot \frac{1-x}{\sqrt{x}}$$

und $\eta_1 \to \frac{\pi}{12}$. Infolgedessen erhalten wir ohne weiteres die entsprechende Limesbeziehung für die Funktion $\omega_k(z; z_{\infty}, z_0)$:

$$\begin{split} & \omega_{k}(z; z_{\infty}, z_{0}) \rightarrow \frac{i}{z_{\infty}} \exp\left[\frac{1}{6} \lg \left| \frac{z_{\infty}}{z_{0}} \right| \lg \frac{z}{z_{\infty}} \right] \\ & - \frac{1}{24} \left\{ (\lg^{q} \bar{z}_{\infty} z - \lg^{2} |z_{\infty}|^{2}) + \left(\lg^{3} \frac{z}{z_{0}} - \lg^{2} \frac{z_{\infty}}{z_{0}}\right) - (\lg^{2} \bar{z}_{0} z - \lg^{2} \bar{z}_{0} z_{\infty}) - \lg^{2} \frac{z}{z_{\infty}} \right\} \right] \\ & \times \frac{1 - \bar{z}_{\infty} z}{|\sqrt{z_{\infty}} z|} \frac{|z_{\infty}|}{1 - |z_{\infty}|^{2}} \frac{z_{0} - z}{|\sqrt{z_{0}} z|} \frac{\sqrt{z_{0}} z_{\infty}}{z_{0} - z_{\infty}} \frac{1 - \bar{z}_{0} z_{\infty}}{|\sqrt{\bar{z}_{0}} z_{\infty}|} \frac{\sqrt{z_{0}} z}{1 - \bar{z}_{0} z} i \frac{\sqrt{z_{\infty}} z}{z_{\infty} - z} \\ & = \frac{1 - \bar{z}_{\infty} z}{1 - |z_{\infty}|^{2}} \frac{z_{0} - z}{z_{0} - z_{\infty}} \frac{1 - \bar{z}_{0}}{1 - \bar{z}_{0} z}. \end{split}$$

Derselbe Titel, I. Proc. 21 (1945), 285-295; II. Proc. 21 (1945), 296-307.

Diese Grenzfunktion vermittelt, wie erwartet, gerade die schlichte konforme Abbildung von |z| < 1 auf die längs eines Kreisbogens um den Ursprung mit dem Radius $\frac{|1-\bar{z}_0 z_{\infty}|}{(1-|z_{\infty}|^2)|z_0-z_{\infty}|}$ aufgeschlitzte Vollebene. Ferner betragen ihr Absolutbeträge an z=0 und $z=e^{i\theta}$ ersichtlich

$$\frac{1}{1-|z_{\infty}|^2}\left|\frac{1-\overline{z_0}z_{\infty}}{z_0-z_{\infty}}\right|\left|\frac{-z_0}{z_{\infty}}\right| \text{ bzw. } \frac{1}{1-|z_{\infty}|^2}\left|\frac{1-\overline{z_0}z_{\infty}}{z_0-z_{\infty}}\right|,$$

und also ist das Verhältnis von der letzten Größe zur ersten gerade gleich $\left| \frac{z_{\infty}}{z_0} \right|$.

Wenn man sie aufs neue an z=0 so normiert, daß sie dort den Wert 0 nimmt und die Ableitung 1 besitzt, d. h. wenn man in ihr $z_0=0$ setzt und dann die so entstandene Funktion mit $-z_{\infty}^2(1-|z_{\infty}|^2)$ multipliziert, so ergibt sieh die Funktion

$$\frac{z_{\infty}z(1-\bar{z}_{\infty}z)}{z_{\infty}-z},$$

welche nichts anderes als die von verschiedenen Verfassern²⁾ gebräuchliche Gestalt ist.

2. Die Funktion $\omega_r(z; z_{\infty}, z_0)$.

Die die Radialschlitzabbildung vermittelnde, in I, \mathbf{A} , § 6 gewonnene Funktion

$$egin{aligned} \omega_r(z; z_\infty, z_0) &= rac{i}{z_\infty} \left(rac{z}{z_\infty}
ight)^{rac{2\eta_1}{\pi}-irg} rac{z_\infty}{z_0} \ & imes rac{\sigma(i\lg|z_\infty|^2)\sigma\!\left(i\lgrac{z}{z_0}
ight)\!\sigma(i\lgar{z}_0z)}{\sigma\!\left(i\lgrac{z}{z_\infty}
ight)\!\sigma(i\lgar{z}_\infty z)\sigma\!\left(i\lgrac{z}{z_\infty}
ight)\!\sigma(i\lgar{z}_0z_\infty)} \end{aligned}$$

läßt sich auch in ganz derselben Weise erledigen wie bei ω_k . Bei $q \to 0$ ergibt sich in der Tat

$$\begin{split} \omega_{r}(z;z_{\infty},z_{0}) &\to \frac{i}{z_{\infty}} \exp\left[\frac{i}{6} \arg\frac{z_{\infty}}{z_{0}} \lg\frac{z}{z_{\infty}}\right] \\ &- \frac{1}{24} \left\{ \left(\lg^{2} \frac{z}{z_{0}} - \lg^{2} \frac{z_{\infty}}{z_{0}}\right) + (\lg^{2} \bar{z}_{0}z - \lg^{2} \bar{z}_{0}z_{\infty}) - (\lg^{2} \bar{z}_{\infty}z - \lg^{2} |z_{\infty}|^{2}) - \lg^{2} \frac{z}{z_{\infty}} \right\} \right] \\ &\times \frac{z_{0} - z}{\sqrt{z_{0}z}} \frac{\sqrt{z_{0}z_{\infty}}}{z_{0} - z_{\infty}} \frac{1 - z_{0}\bar{z}}{\sqrt{z_{0}z_{\infty}}} \frac{\sqrt{\bar{z}_{0}z_{\infty}}}{1 - \bar{z}_{0}z_{\infty}} \frac{1 - |z_{\infty}|^{2}}{|z_{\infty}|} \frac{\sqrt{\bar{z}_{\infty}z}}{1 - \bar{z}_{\infty}z} i \frac{\sqrt{z_{\infty}z}}{z_{\infty} - z} \\ &= \frac{z_{0} - z}{z_{0} - z_{\infty}} \frac{1 - \bar{z}_{0}z}{1 - \bar{z}_{0}z_{\infty}} \frac{1 - |z_{\infty}|^{2}}{1 - \bar{z}_{\infty}z} \frac{1}{z - z_{\infty}}; \end{split}$$

hiebei ist eine ersichtliche Beziehung

²⁾ Vgl. etwa K. Löwner, Über Extremalsätze bei der konformen Abbildung des Äußeren des Einheitskreises, Math. Zeitschr. 3 (1919), 65-77; H. Grunsky, Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche, Schriften d. math. Sem. u. Inst. f. angew. Math. d. Univ. Berlin 1 (1932-3), 95-140.

$$\lg \frac{z_{\infty}^2 \bar{z}_0^2}{\bar{z}_{\infty}^2 z_0^2} = 4i \arg \frac{z_{\infty}}{z_0}$$

berücksichtigt. Diese Grenzfunktion bildet ja den Einheitskreis |z| < 1 auf die längs einer Strecke mit dem Argumente arg $\frac{-1}{(z_0 - z_\infty)(1 - \bar{z}_0 z_\infty)}$ aufgeschlitzten Vollebene ab. Ihr Argument an z = 0 beträgt

$$\arg\frac{z_0}{(z_0-z_\infty)(1-\bar{z}_0z_\infty)(-z_\infty)},$$

und also ist die Differenz dieser beiden Argumente gleich arg $\frac{z_{\infty}}{z_0}$.

Normieren wir sie insbesondere, wie vorhin, an z=0 ($=z_0$), so ergibt sich die Funktion

$$\frac{z_{\infty}z}{(1-\bar{z}_{\infty}z)(z_{\infty}-z)},$$

welche auch eine üblich gebrauchte ist.

3. Grunskysche Funktionen

In ganz derselben Weise wie oben läßt es sich auch bestätigen, daß die in II, \mathbf{A} , § 10 behandelten Grunskyschen Funktionen fürs Grundgebiet R:

$$\begin{split} \mathfrak{p}(z;z_0,z_\infty) &= \frac{i}{z_\infty} \left(\frac{z}{z_\infty}\right)^{\frac{\gamma_1}{\pi} \lg \frac{z_\infty}{z_0}} \frac{\sigma\left(i \lg \frac{z}{z_0}\right)}{\sigma\left(i \lg \frac{z}{z_\infty}\right) \sigma\left(i \lg \frac{z}{z_\infty}\right)}, \\ \mathfrak{q}(z;z_0,z_\infty) &= \left(\frac{z}{z_\infty}\right)^{-\frac{\gamma_1}{\pi}} \overline{\lg \frac{z_\infty}{z_0}} \frac{\sigma(i \lg |z_\infty|^2) \sigma(i \lg \overline{z_0}z)}{\sigma(i \lg \overline{z_0}z_\infty) \sigma(i \lg \overline{z_0}z)}, \\ \mathfrak{j}_a(z;z_0,z_\infty) &= \frac{i}{z_\infty} \left(\frac{z}{z_\infty}\right)^{\frac{\gamma_1}{\pi}} \left(\lg \frac{z_\infty}{z_0} - i \lg \frac{z_\infty}{z_0}\right) \\ &\times \frac{\sigma\left(i \lg \frac{z}{z_0}\right)}{\sigma\left(i \lg \frac{z}{z_\infty}\right) \sigma\left(i \lg \overline{z_0}z\right)} \left(\frac{\sigma(i \lg |z_\infty|^2) \sigma(i \lg \overline{z_0}z)}{\sigma(i \lg \overline{z_0}z_\infty) \sigma(i \lg \overline{z_0}z)}\right)^t \\ &\left(t = \frac{(1+ia)^2}{1+\sigma^2}\right) \end{split}$$

bei unsrem Grenzübergange $q \rightarrow 0$ beziehungsweise in die entsprechenden Funktionen

$$egin{array}{c} rac{1}{z_{\infty}-z_{0}} rac{z-z_{0}}{z-z_{\infty}} \ , \ rac{1-|z_{\infty}|^{2}}{1-ar{z}_{0}z_{\infty}} rac{1-ar{z}_{0}z}{1-ar{z}_{\infty}z} \ , \ rac{1}{z-z_{\infty}} rac{z-z_{0}}{z_{\infty}-z_{0}} \Big(rac{1-|z_{\infty}|^{2}}{1-ar{z}_{0}z_{\infty}} rac{1-ar{z}_{0}z}{1-ar{z}_{\infty}z}\Big)^{t} \end{array}$$

übergehen, welche schon auch von Grunsky selbst³⁾ explizit angegeben worden sind.

³⁾ Vgl. die in Anm. 2) zitierte Arbeit,