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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.&., April 26, 1945)

1. The purse of this paper is to give a general discussion of the Dirichlet

problem from the standpoint of the theory of positive linear operations in a semi-

ordered Banach space. It will be shown that the so-called sweeping out process

of obtaining the solution of the Dirichlet problem may be observed as a kind of

Markoff process) in the space of continuous functions.

2. Let be a compact Hausdorff space. The set C() of all real-valued

continuous functions x(,) dened on is a Banach space with respect to the

IlorII1

(1) I! = II=P-I
0() is also an (M)-spaee> wih respee to he partial ordering"

and e(a)--I is he uni elemen o
3. Le D be a bounded domain in he Gauian plane. We do no

ha D is simply or finitely connected. Le us corider he (M)-paces O(D)
and 0(/’) where D i the closure of D and /’=D--

Then /-- A(z) is a bounded inear operaion which mam.O(D) onto O(F), and

clearly saisfieB

() >=o ,Z,ll,i,es A(z,)>_O,
() zl ,i,m191Ces A(z)l,
(5) II A(x)II II z !1.

That =A(z)is an onto-mapping means the act that, Ior may y()e C(P),
there exisf an x() Cr(’) such tha A(z)=/. We can take a x(’)may

continuou extension o y(’) rom 1" to D. Such an extenion however is

lmique]y determined; but it is poiblez) to find in a concrete way a bunded

linear operation z=B(y) which mar O(F) into C(D--) such hat AB(y)=y

on C(/’) and fiarther that
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of the space of continuous functions, Annals of Math., 42(1941).
3) S. Kakutani, Simultaneous extension of continuous functions considered as a posi-

live operation, Jap. Journ. of Math., 19(1940).



228 S. KAKUTANI. [Vol. 21,

(6)
(7)
(8)

4.

yO implies B(y’)%0,
y-i implies B(y)-----1,
I]B(Y) il Il Y lI.

Let now D be a bounded domain in the Gaussian plane which is regular

for the Dirichlet problem. Let H(D-) be the closed linear subspace of C(,.D)
consisting of all x()e c(D) which are harmonic in D. Tha D is regular

means that, for a y()e C(F), there exists a u()e H(D) such that A(u)
----y. Such a u() e H(D) is uniquely determined by y() e C(I’), and u--

U(y) thus deiined is a botmded linear operation which mals 0(/’) onto

It is clear that u--U(y) is an example of a bomaded linear operation x--B(y)
which maps C(F) into C(D) with the properties (6), (7) and

It is easy to see that H(D) itself is an (M)-space with respect to the same

partial ordering as C(D), and further that H(D) is isometric and lattice isomor-

phic with C(F). But it is to be noticed that the sup(x1, xa) of xl and in

H(D) does not necessarily coincide with the sup(x, ,) of x and xa in C(D).
There are many ways of obtaining u--U(y) e H(D) from a given

O(F). The well-known sweeping out process proceeds as follows: Let {/
1, 2,... be a sequence of circular domains K=K(., ’)--- -- <’}
with the centers and the radii ;,, completely contained in D (i.e. the closure

K of K is contaed in D) with the property-

(9) for any o e D, the’e exists an ’o>’0 such that K(o,
ov infinitely many

For each n, let us define a bounded linear operation x-- P,,(x) which maps.

C(D) into itself.by the following conditions"

(10 x() is ha’monic in

(ll) x’()--x() on D--K,.
It is then easy to see that P,(x) satisfies the following conditions"

(12) xO implies P,,(x)0,
(!3) P(x)--x if and only if x() is had’mosaic in I,
(14) l! P,,(x)i] 1] x

From () and (la) follows-

(15) P,(x)=x, n=l, 2,..., if and ody if () is ha’monic in D.
In terms of these linear operations Y,,(a), we may gate the fundamental

result of the sweeping out proems as follows-

Theorem 1. Let D be a bounded domain in the Gaussian plane which

is regda" for the D&ichlet problem. Let I" be the boundary of D. Fa" any

y() e C(/’), le () be any coniuoa ensio o$ y() fom Y to D. If
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we put x=P,,P,,_I...PI(x), n=l, 2,..., then the seqznce {x,., n=l, 2,...}
conve.rges st,congly in C(D) (i.e. u,iformly on D) to the solution u() of the

Diq’ichlet pq’oblem fo" the domai D and the bounda’y ulue y((). In other

vo,’ds, the sequence of ued liav ope’at n:1, 2,... }, who’e
P,,P,,_...P, n= 1, 2,..., cverges stroly C(D) to the bou.

opeq’atim VU
It is not ct that, by a slht mificafion of the aent d

in the prf of Threm 1, wem obtain

The’em 2. Uer the me aumpti as in Theorem 1,, let put-- PP:...P(x), n=l, 2,..., f" any x() C(D). Then the seqnce
n=l, 2,...} verges strzgly n C(D) (i.e. unfmly D) to e
limit u=V(x)UA(x) as in e’em 1. In othev ds, the seqnce of
bounded lin,eaq" operations Q, n:1, 2,... }, where:PP...P, n:1, 2,
..., cve’ges strgly C(D) to the ed liq" opeti VUA.

5. t D thee in 4. For a o D, let denote by

the dnce of from the unda F of D. For x() G(D), let

an element of C(D) wch is quely deteed by the foo contio"

(16) if o D, then (o) is the meanl of x() the

Then x:R(x) is adi linear omration which ma C(D) iff and

tisfi:

(18) xO implies R(x)0,
(19) R(x)--x if and only if x() e tI(D),

By a similar argument as in the proof of Theorems 1 and 2, we may obtain

Th,eo.re. 3. Let D b a bounded domain n thv Gaussian plane,
4,s ’egular fa" the D&ichlet problem. Let F be thv bounda’y of D. tor any
y() e C(F), let x() be any continuous xtension of y() fl’om F to D.
ve im.tt x,,=R(x), n-l, 2,..., then the sequence {x n=l, 2,...} converges
st’ongly in (D) (i.e. unifo’mly on D) to the solution u(() of the D&ichlet

p,roblvm, for the domain D and the bounda’y value.y((). In othsr--wods, the

sequence of the ire,rations {1 n--l, 2,... converges st’ongly in C(D) to the

bounded liner operation VUA.
6. Let D be the same as in 4. Let -o be an arbitrary point of D. For

roD" x() e C(D), put

(21) f(o,



S. KAKUTANI. [Vol. 21,

where u--V(.z) is the solution of the Dirichlet problem for the domain D cor-

responding to the boundary value y=A(x). Then f(o, z) is a bounded linear

functional defined on the (M)-space C(D) with the properties-

(22) zO ’impl’ie,s f(o, x)>O,

Hence) here exists a exuntably additive nee D(o ) defined for all Borel

subsets B of D such that P(o, D)----1 and

() (o)](o, )=f’(o, d)()
for any () C(D). Since u()=0 on/) if ()=0 on/" (i.e. if y-A()
--0), so we see that the mass distribution P(o, E)is distributed only on F.
Thus P(o, E) is a eountably additive measure detlned for all Borel subsets E of

F suCh that P(o, F)= and

() (’0)=](o, )=f(0, d)y()

for any y() e C(F). is clear that, for any o e D, the measure P(o,)
(o, ED)thus obtained is nothing else than the harmonic measure" in the

sense of It. levan]hma of a Borel subset E of/ with resist to the domain D
and the poin o. If o/, then the mass distribution P(o, 1, is concentrated

at o, i.e. P(o, E)- or 0 aording as o e B or not.
Vor any ()e e(D) and for each n, et us define ’=PXz)e V(D) by

means of a circular domain K,-- K(,, ’) as stated in . It is hen easy to

s that, for any o e D, the vaue ’(o) of ’() at =o is obtained from ()
by the integral:

(6) ’(o?=fP(o, )(),
where P(0, E) is a countably additive measure defined for all Borel subsets /

of D with the following properties- (i) P(0, E) is a mass distribution on the

circumference C,,--Bd(,. Ix’,.) of K., and is given by

(27) P,.(o, 9=
2 --2’(-)+f

if o 6 Ks; (ii) P(o, E) is a mass distribution concentrated at o if o 6 D--

Le us put q,(0, E)= P,(o, E) and

4) S. Kakutaui, loe. cir. (2),
5) It. Nevanlinna, Eindeutige analytische Funktiouen, 1936.
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Then it is easy to see that the vMue a,,(o) of a=Q(x)=PP,,_,...P() at

(=(o is obM from () byM the intrM:

(29) x(o)=fQ.(o,

Th we oerve the swpi out proce a non-homogen Mar-

koff protein in the ace C(D) of ntinuo nctio x() defin on D. From
Threm 1 follows

e’em 4. Let D be a boued domain in the sn planv hich

’egar f the Di’ichlet problem. Let P be thv bvy of D. Let

define the kels P,,(o, as in above. en, f" any o D, in a non-

homoge Markoff pros, in which the n-th traiti p’obility is gin

P(o, E), the seqnce of composed kels [Q,,(5, E) n:l, 2,... c-

veq’ges akly to the ha’monic mre P(o, E, D) in the sere

lin of e set E wh q’espect to the domain D a the point o, where the

ak cvergence mea that,f any x() C(D) with y:

8 .
In the same way from Theorem 2 follows-

Theorem 5. Under the same aumptions as in Theo’em 4, let ts put
,(o, E)--Pl(o, E) and

(a) d)P,,(, E), n--2, 3,...

Then the sequence of composed keels {Q,,((o, E) In=l, 2,... conve’ges

weakly to the ha’monic measure P(o, E, D).
From the standpoint of the theory of the sweeping out process, Theorem 5

deserves more attention than Theorem 4. In fact, (31) means that the n-th

mass distribution Q,(0, E) is obtained from the (n-1)4h Q,,-l(0, E) by swe-

eping out the masses distributed inside K,, onto the boundary C,, of K,, according

o the law given by P,,(-o, E), while it is not so clear what the kernels Q,(o, E)
mean in Theorem 4.

We may also interprete Theorem 5 in the following way" Consider a Brow-

nian motion [0+ (z(t, eo)--z(O, )) <t< o, o e } starting from e D.
As was shown in a preceding paper for any Borel subset E of the boundary /

6) S. Kakutani, Two-dimensional Brownian motion and harmonic functions, Proc. 20

(1944)
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of D, the probability that the Brownian motion starting from 0 wiil enter into

E for some t--t()------(o, F, )0 without entering into F-E before it, is

eqml to the harmonic measure P(o, E, D) in the sense of R.. Nevanlima of

the set E with respect to the domain D and the point ’0.
Let us now define, for my e .q, the sequence of real numbers

:1, 2,... as follows: t()--the smallest value of for which t:0 and 0+
(z(t, ,)--z(O, a,))e C--Bd(K) if oe K t()--O if oe D--K. In case

t,,_() is already defined, t,,(,)--the smallest value of for which

and .,+ (z(t, a,)--z(O, )) e C,,= Bd(K,,) if o+ (z(t,,_(o), )--z(O, )) e/=
t,,(co)--t,_() if o+ (zCt,_(), )-z(0, )) D-K..,. Then it is easy to see that

t,,() n-- 1, 2,... is a monotone non-decreasing sequence of ea-me’asurable func-

tions of such that

almost everywhere on , and consequently that

(33) lim,,.. (0-t-(z(t,,(o), )--z(O, )))
r,

almost everywhere on 2, where a(o, F, o) denotes the point of/" at which the

Brownian motion star-ing from o enters into F for the first time alter t----0.

Further it is not dillicult to see that the mass distribution (Q, E) is obtained

from the mesurable flnction t() by the formula"

L+ o)-z(o, E},
where the right hand side means the probability (:measure) of the set of all

e $2 such that 0-t-(z(t(o), )--z(O, ))e E. From these follows easily that

the sequence {Q,,(0, E) ln-1, 2,...} converges weakly to the harmonic

measure P(.o, E--D), or in other words, for any x() e C(D), the sequence

n= 1, 2,..., converges to

fx(a(o, F, ))d

7. An analogous situation holds for the case of Theorem 3. In this case,
the value x(0) of ----R(x) at --o is obtned from x() by taking the inte-

gral"
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(37) fR(:o, d)x(),

where the kernel R(o, E) is a countably additive measure defined for M1 Borel

subsets E of D and is given by

1measure of E K(o, --O(o))
(38) (o, E)=

measure of

if 0 D, and B((0, E) is a mass distribution concentrated at 0 if 0 /’.

It is easy to see that that the value x,,(0) of x,=R"(x) at --o is obtain-

ed from x() by" taking the integral-

(0) :")(0, E)=fR(0, d)n("-’)(, E), q,=, ,...
From Theorem 3 then follows"

Theoren 6. Let D be a bounded dowain in the Gassian plane wb.ich

is ’eg,tdaq" f" &e Dirichlet p’obleq. Let R(o, E) be defined as in above..

Then, ,in a ho,mogeeuos Ma’koff process in ohich the t’ansition fv’obabilit3t
is give:a by R(o, E), the sequeqce of ires’areal ke,nels {R")(0, E)]n--I,2,...}
conve’ges weakly to the haq’monic qeasu’e P(o, E, D) in the sense of R.
Nevag4nna of the set E with q’espect to the domin D and the point o,r whe’e

the weak cove’gence meaqs the same as in Theo’em 4.

8. Let us now consider the case when D is an arbitrary boundeA domain

in the Gaussian plane which is not necessarily regular. In this case we cannot

say that, lot any x() C(D), the sequence

1, 2,...} or {R’(z)ln=l ,...} converges strongly in C(D) (i.e. uniformly on

D). But i will be easily, seen that these sequences converge at every point of

D and that the convergence is even uniform on every compact set contained in

D. Further, this limit funotion is nothing else than the generalized solution of

the Diriehlet problem in the sense of N. Wiener) for the domain D which depends

only on the boundary value y--A(x) of x() on

7) N. Wiener, Certain notions in potential theory, Journ. of Math. and Phys., M.I.T.,.
092).


