68. Trigonometrical Interpolation.

By Gen-ichirô Sunouchi.
Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by S. Kakeya, m. 1. A., Dec. 12, 1946.)

1. Let $f(x)$ be a continuous function. It is well known that there is just one trigonometrical polynomial of order n which coincides with $f(x)$ in the points:

$$
x_{i}=i \frac{2 \pi}{2 n+1}(i=0,1,2 \ldots, 2 n)
$$

If we write

$$
\varphi_{n}(t)=x_{i}(i=0,1,2, \ldots, 2 n)
$$

for $x_{i} \leqq t<x_{i+1}$, the desired polynomial becomes

$$
\begin{aligned}
U_{n}(f, x) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \frac{\sin \left(n+\frac{1}{2}\right)(x-t)}{\sin \frac{1}{2}(x-t)} d \varphi_{n}(t) \\
& =-\frac{1}{2 n+1} \sum_{i=0}^{2 n} f\left(x_{i}\right) \frac{\sin \left(n+\frac{1}{2}\right)\left(x-x_{i}\right)}{\sin \frac{1}{2}\left(x-x_{i}\right)}
\end{aligned}
$$

J. Marcinkiewicz [1] has given a continuous function $f(x)$ which does not satisfy
(1)

$$
\sum_{n=1}^{N}\left|U_{n}(f, x)-f(x)\right|=O(N)
$$

everywhere. In §2, we prove that (1) holds almost everywhere for $f(x)$ satisfying a certain continuity condition. In §3, we prove inequality theorems concerning interpolation polynomials which are the analogon of the theorems due to Littlewood, Paley and Zygmund concerning Fourier series. The special case $p=2$ of our theorems are already proved by J. Marcinkiewicz [2, 3].
2. If we denote

$$
\omega(h)=\operatorname{Max}_{0 \leq x \leq 2 \pi}|f(x+h)-f(x)|
$$

and

$$
\theta_{n}(x)=\frac{1}{2} U_{n}(f, x)+\frac{1}{4} U_{n}\left(f, x+\frac{2 \pi}{2 n+1}\right)+\frac{1}{4} U_{n}\left(f, x-\frac{2 \pi}{2 n+1}\right),
$$

then we get
Theorem 1. If $\sum_{n=1}^{\infty} \frac{1}{n}\left[\omega\left(\frac{1}{n}\right)\right]^{p}<\infty$, where $\infty>p \geqq 1$, then

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|U_{n}(f, x)-\theta_{n}(x)\right|^{p}
$$

converges almost everywhere. Accordingly under the same hypothesis

$$
\sum_{n=1}^{N}\left|U_{n}(f, x)-f(x)\right|^{p} d x=o(N)
$$

almost everywhere.
For the proof we begin with some lemmas.
Lemma 1. If $f(x)$ is continuous, then

$$
\left(\int_{0}^{2 \pi}\left|U_{n}(f, x)\right|^{p} d x\right)^{\frac{1}{p}} \leqq A_{p} \operatorname{Max}_{0 \leqq x \leq 2 \pi}|f(x)|
$$

This is due to J. Marcinkiewicz [1].
Lemma 2. If $f(x)$ is continuous, then $\theta_{n}(x)$ converges uniformly to $f(x)$.
This is due to A.C. Offord [6].
We will now prove the theorem. By Lemma 1, we have

$$
\begin{aligned}
& \int_{0}^{2 \tau}\left|U_{n}(f, x)-\theta_{n}(x)\right| p d x \leqq A_{p}\left(\operatorname{Max} \left\lvert\, f(x)-\frac{1}{2} f\left(x+\frac{2 \pi}{2 \pi+1}\right)-\frac{1}{2}\right.\right. \\
& \left.\left.\quad f\left(x-\frac{2 \pi}{2 n+1}\right)\right|^{p}\right) \leqq B_{p}\left[\omega\left(\frac{1}{n}\right)\right]^{p},
\end{aligned}
$$

and then

$$
\int_{0}^{2 \pi} \sum_{n=1}^{\infty} \frac{1}{n}\left|U_{n}(f, x)-\theta_{n}(x)\right| d x \leqq B_{p} \sum_{n=1}^{\infty} \frac{1}{n}\left[\omega\left(\frac{1}{n}\right)\right]^{p}
$$

Since the right-hand side series converges, the integrand of the left-hand side is finite almost everywhere. By Kronecker's theorem

$$
\sum_{n=1}^{N}\left|U_{n}(f, x)-\theta(x)\right|^{p}=o(N)
$$

almost everywhere. In view of Lemma 2, we get

$$
\sum_{n=1}^{N}\left|U_{n}(f, x)-f(x)\right| p=o(N)
$$

almost everywhere. Thus the theorem is proved.
Theorem 2. If $\sum_{k=1}^{\infty}\left[\omega\left(\frac{1}{n_{k}}\right)\right]^{p}$ converges, $U_{n k}(f, x)$ converges to $f(x)$ almost everywhere.

Proof is immediate by the fact

$$
\int_{0}^{2 \pi} \sum_{k=1}^{\infty}\left|U_{n k}(f, x)-\theta_{n k}(x)\right|^{p} d x \leqq C_{p} \sum_{k=1}^{\infty}\left[\omega\left(\frac{1}{n_{k}}\right)\right]^{p}
$$

3. We denote by A^{p} the class of absolutely continuous function $f(x)$ with $f(0)=f(2 \pi)=0$ and $f^{\prime}(x) \varepsilon L^{p}$; by $U_{n}^{\prime}(f, x)$ the derivative of $U_{n}(f, x)$ and lastly by $\|f\|_{p}$ the expression

$$
\left(\int_{0}^{2 \pi}|f| p d x\right)^{\frac{1}{p}}
$$

After Marcinkiewicz-Zygmund [4] we denote the interpolation polynomial b!r $\sum^{n} c_{\nu}^{(n)} e^{i u x}$. Further we put

$$
U_{n, i}(f, x)=\sum_{\nu=1}^{i} c_{\nu}^{(n)} e^{u, x},
$$

and
then we have $\sigma_{n}^{\prime}(f, x)=\left(\sum_{i=1}^{n} U_{n, i}^{\prime}(f, x)\right) / n$,
Theorem 3. If $f(x) \varepsilon \mathrm{A}^{p}(p>1)$,

$$
\int_{0}^{2 \pi}\left(\sum_{n=1}^{\infty} \frac{\left|U_{n}^{\prime}(f, x)-\sigma_{n}^{\prime}(f, x)\right|^{2}}{n}\right)^{\frac{1}{2} p} d x \leqq A_{p} \int_{0}^{2 \pi}\left|f^{\prime}(x)\right|^{p} d x
$$

and

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(\sum_{k=1}^{\infty}\left|U_{n k}^{\prime}(f, x)-\sigma_{n k}^{\prime}(f, x)\right|^{2}\right)^{\frac{1}{2} p} d x \leqq & B_{p} \int_{0}^{2 \pi}\left|f^{\prime}(x)\right|^{p} d x \\
& \left(n_{k+1} \mid n_{k}>\alpha>1\right)
\end{aligned}
$$

Accordingly

$$
\sum_{n=1}^{N}\left|U_{n}^{\prime}(f, x)-f^{\prime}(x)\right|^{2}=o(N)
$$

almost everywhere and $U_{n k}^{\prime}(f, x)$ converges \cdot to $f^{\prime}(x)$ almost everywhere if n_{k+1} / $n_{k}>\alpha>1$.

Proof runs after Zygmund [7]. We require three lemmas.
Lemma 3. If $f^{\prime}(x) \varepsilon \mathrm{A}^{p}(1<\mathrm{p}<\infty)$, then

$$
\left\|f-s_{n}\right\|_{p} \leqq C_{p} n^{-2}\left\|f^{\prime \prime}\right\|_{p}
$$

where s_{n} is the n-th partial sum of Fourier series of $f(x)$.
For, by Marcinkiewicz [2]

$$
\left\|f-s_{n}(f)\right\|_{p} \leqq n^{-1} C_{p}\left\|f^{\prime}\right\|_{p}
$$

and then

$$
\left\|f-s_{n}\right\|_{p} \leqq C_{p} n^{-1}\left\|f^{\prime}-s_{n}^{\prime}\right\|_{p} \leqq C_{p} n^{-2}\left\|f_{t}^{\prime \prime}\right\|_{p}
$$

which is the required.
Lemma 4. If $f^{\prime}(x) \varepsilon \mathrm{A} p(1<\mathrm{p}<\infty)$, then

$$
\left\|U^{\prime \prime} n(f, x)\right\|_{p} \leqq\left\|f^{\prime \prime}\right\|_{p}
$$

For, by Marcinkiewicz [2] we have

$$
\left\|U_{n}^{\prime}(f, x)\right\|_{p} \leqq\left\|f^{\prime}\right\|_{p}
$$

Therefore using Lemma 3, we can prove this lemma by the method analogous to Marcinkiewicz [2].

Lemma 5. If $\mathrm{p}>1$,

$$
\int_{0}^{2 \pi}\left(\sum_{n=1}^{N}\left|U_{k n}^{\prime}\left(f_{n}, x\right)\right|^{2}\right)^{\frac{p}{2}} d x \leqq A_{p} \int_{0}^{2 \pi}\left(\sum_{n=1}^{N}\left|f_{n}^{\prime}(x)\right|^{2}\right)^{\frac{1}{2} p} d x
$$

for $f \varepsilon \mathrm{~A}^{p}$, and

$$
\int_{0}^{2 \pi}\left(\sum_{n=1}^{N}\left|U^{\prime \prime} k n\left(f_{n}, x\right)\right|^{2}\right)^{-\frac{p}{2}} d x \leqq B_{p} \int_{0}^{2 \pi}\left(\sum_{n=1}^{\infty}\left|f^{\prime \prime} n(x)\right|^{2}\right)^{\frac{1}{2} p} d x
$$

for $f^{\prime} \in \mathrm{A}^{\mathrm{p}}$.
For since, $U_{n}^{\prime}(f, x)$ and $U^{\prime \prime} n(f, x)$ are linear operations on $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ respectively, we get the lemma by using Rademacher's function. (cf. Mar-
cinkiewicz-Zygmund (5)).
The proof of the first half of the theorem is now immediate by lemma 5 , if we put $s_{n}\left(e^{\theta}\right)$ by $U_{n}^{\prime}(f, x), s_{n}^{\prime}\left(e^{i \theta}\right)$, by $U^{\prime \prime}{ }_{n}(f, x)$ and lastly $\tau_{n}\left(e^{i \theta}\right)$ by $\sigma_{n}^{\prime}(f$, x) in Zygmund's argument [7].

Lemma 6. If $f(x) \in \mathrm{A}^{p}, \sigma^{\prime} n(f, x)$ converges to $f^{\prime}(x)$ almost everywhere.
This is known [2].
The later half of the theorem is immediate by using lemma 6. Thus the theorem is now completely established.

Literature

[1] Marcinkiewicz, J., Sur linterpolction (I), Studia Math., 6 (1936), 1-17.
[2] Marcinkiewicz, J., Sur linterpolation (II), ibid, 67-81.
[3] Marcinkiewicz, J., Une théoréme sur linterpolation, Mathematica, 14 (1938), 36-38.
[4] Marcinkiewicz, J. and Zygmund A., Méan value of trigonometrical polynomials, Fund. Math., 28 (1937), 131-166.

15] Marcinkiewicz, J. and Zygmund A., Quelques inégalités pour les opérations linéaires, Fund. Math., 32 (1939), 115-121.
[6] Offord, A. C., Approximation to unctions by trigonometrical polynomials, Duke Math. Journ., 6 (1940), 505-510.
[7] Zygmund, A., On the converence and summability of power series on the circle of convergence (1), Fund. Math., 30 (1938), 170-196.

