12. On the Cartan Decomposition of a Lie Algebra.

By Yozô MASTUSHIMA.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., May 12, 1947.)

Let \mathfrak{L} be a Lie algebra over the field of complex numbers, \mathfrak{H} and \mathfrak{H}' maximal nilpotent subalgebras of \mathfrak{L} containing regular elements. E. Cartan has shown for semi-simple \mathfrak{L} that there exists an inner automorphism A such that $\mathfrak{H}' = A \mathfrak{H}^{1}$. In this note we shall show that this theorem is valid for any, not necessarily semi-simple, Lie algebra. From this we see easily that the decomposition of a Lie algebra into the eigen-spaces of a maximal nilpotent subalgebra containing a regular element (Cartan decomposition) is unique up to inner automorphisms of \mathfrak{L} .

Let (6) be the Lie group which corresponds to \mathfrak{L} . To every element a of \mathfrak{L} corresponds a one-parameter subgroup g(t) of (6) and a is the tangent vector at the unit element to the differentiable curve g(t). Extending to general Lie groups a notion familiar for matrices, we shall denote by *exp ta* this one-parameter subgroup g(t) and by *exp a* the point of parameter 1 on this curve. Further *exp* \mathfrak{H} means the (local) subgroup of (6) which corresponds to a subalgebra \mathfrak{H} of \mathfrak{L} . If we transform the elements of the group *exp ta* by a fixed element g, we obtain a new one-parameter subgroup *exp ta'*; the mapping $a \rightarrow A_{\mathfrak{f}}a = a'$ is an inner automorphism of \mathfrak{L} generated by g. The mapping $x \rightarrow D_a x = [a, x]$, with a fixed, is a linear operation in \mathfrak{L} , which is called inner derivation of \mathfrak{L} . Suppose that g = exp a and g is sufficiently near to the unit element, then $A_{\mathfrak{f}} = exp D_a$. Let us decompose \mathfrak{L} by A_c into eigen-spaces :

$$\mathfrak{L} = \mathfrak{L}_1 + \mathfrak{L}_{\rho} + \mathfrak{L}_{\sigma} + \dots$$

where $\mathfrak{L}_1, \mathfrak{L}_{\rho}, \ldots$ are the eigen-spaces for the characteristic roots, 1, ρ, \ldots of A_g . Here \mathfrak{L}_1 is a subalgebra of $\mathfrak{L}^{\mathfrak{D}}$.

Lemma³⁾. The systems $u^{-1}g \exp \mathfrak{L}_1 u$, where u runs over a neighbourhood of the unit element, contain a neighbourhood of the element g in \mathfrak{G} .

Proof. Let a_1, a_2, \ldots, a_s be a basis of the subalgebra \mathfrak{L}_1 and a_{s+1}, \ldots, a_r a basis of $\mathfrak{L}_p + \mathfrak{L}_{\sigma} + \ldots$. Then the (local) subgroup $exp \mathfrak{L}_1$ is composed of all elements of the forms $exp(t_1a_1 + \ldots + t_sa_s)$, where the parameters t_i are sufficiently near to zero. To prove our Lemma, it is sufficient to show that the set of elements

¹⁾ E. Cartain, Le principe de dualité et la théorie des groupes simples et semesimples (Bull. Sc. math. t. 49, 1925). Gantmacher has given a proof in a somewhat general form. F. Gantmacher, Canonical representations of automorphisms of a complex semi-simple Lie group, (Recueil mathématique, 5(47), 1939).

²⁾ See Gantmacher, l. c. P. 107: If g is sufficiently near to the unit element then $\mathfrak{Q}_1 \neq 0$.

³⁾ Cf. Gantmacher, l. c. P. 113.

No. 5.]

 $g^{-1}exp(-(t_{s+1}a_{s+1}+\ldots+t_ra_r))gexp(t_1a_1+\ldots+t_sa_s)exp(t_{s+1}a_{s+1}+\ldots+t_ra_r)$ = exp(p_1a_1+p_2a_2+\ldots+p_ra_r),

where $p_i = p_i(t_1, ..., t_r)$ are analytic functions of t_k , cover a neighbourhood of the unit element, when t_k run independently over a neighbourhood of zero. To see this it suffices to show that the Jacobian

$$\frac{\partial(p_1\dots p_r)}{\partial(t_1\dots t_r)}$$

is different from zero for $t_1 = t_2 = ... = t_r = 0$. Let $t_i = 0$ for $i \neq j$, $1 \leq j \leq s$. Then

$$exp(t_ja_j) = exp\sum_{i=1}^{r} p_i(0...t_j...0)a_i.$$

Hence $p_i(0...t_j...0) = \delta_{ij}t_j$ and $\left(\frac{\partial p_i}{\partial t_j}\right) = \delta_{ij}$, for $1 \le j \le s$. Now, let $t_i = 0$ for $i \ne j$, j > s. Then $g^{-1}exp(-t_ja_j)g \cdot exp(t_ja_j) = exp(-t_jA_ga_j)exp(t_ja_j)$ $= exp(\sum_{i=1}^r p_i(0...t_j...0)a_i).$

From this we obtain the equations

$$(1-A_{g})a_{j}=\sum_{i=1}^{r}\left(\frac{\partial p_{i}}{\partial t_{j}}\right)_{i=0}a_{i}, \text{ for } j>s.$$

Since the linear operation $1-A_{j}$ transforms the space $\mathfrak{L}_{\rho} + \mathfrak{L}_{\sigma} + \dots$ into itself and is non singular on this space, $\left(\frac{\partial p_{i}}{\partial t_{j}}\right)_{i=0}=0$ for $1 \leq i \leq s$, j > s, and the matrix

$$\left(\left(\frac{\partial p_i}{\partial t_j}\right)_{t=0}\right)_{s+1 \ge i, j_{-}, j_{-}}$$

is non-singular.

Thus

 $\frac{\partial(p_1\dots p_r)}{\partial(t_1-t_r)} = 0.$

Now let $a_1, a_2 ..., a_r$ be a basis of $\mathfrak{L}, \xi_1 a_1 + \xi_2 a_2 + ... + \xi_r a_r$ a general element of \mathfrak{L} ($\xi_1, ..., \xi_r$ are variables) and let

$$|tE - (\xi_1 D_{a_1} + \ldots + \xi_r D_{a_r})| = t^r - \psi_1(\xi) t^{r-1} + \ldots \pm \psi_{r-i}(\xi) t^i$$

be the characteristic equation of \mathfrak{L} .

An element $a = \sum_{i=1}^{r} \lambda_i a_i$ of \mathfrak{L} is called regular, if $\psi_{r-i}(\lambda) \neq 0$. The totality of regular elements is an ophn set in r dimensional complex vector space \mathfrak{L} and singular elements form an algebraic manifold of at most r-1 complex dimensions. Hence the set of all regular elements is connected.

Let $a = \sum_{i=1}^{r} \lambda_i a_i$ and $b = \sum_{i=1}^{r} \mu_i a_i$ be two regular elements, \mathfrak{F}_a and \mathfrak{F}_b the maximal nilpotent subalgebras of \mathfrak{L} containing a and b respectively. First let the parameters (μ_i) be sufficiently near to (λ_i) . We choose a sufficiently small positive number ξ such that $D_{\xi a} = \xi D_a$ has no characteristic roots of the form $2\pi\sqrt{-1}m$, where *m* denotes integer ± 0 . Let $g = exp(\xi a)$ and \mathfrak{L}_1 be the eigen-space for the characteristic root 1 of the inner automorphism $A_{\mathfrak{l}}$. Since \mathfrak{H}_a is the eigen-space for the characteristic root 0 of the inner derivation

 $D_{\xi a}$, $A_g = exp D_{\xi a}$ and moreover, $D_{\xi a}$ has no characteristic root of the form $2\pi \sqrt{-1}m$, we have $\mathfrak{L}_1 = \mathfrak{H}_a$. As $exp\xi b$ is sufficiently near to g, there exists, by the above lemma, an element $u \in \mathfrak{G}$ such that

 $exp\xi b \in u^{-1}g exp\mathfrak{H}_a u$. But since g is contained in $exp\mathfrak{H}_a$, we have $g exp\mathfrak{H}_a \leq exp\mathfrak{H}_a$. Hence $exp\xi b \in u^{-1}exp\mathfrak{H}_a u = exp A_u\mathfrak{H}_a$. Thus there exists

an element $c \in \mathfrak{H}_a$, which is also regular such that $\xi b = A_u c$. Then we obtain

$$\mathfrak{H}_{b} = \mathfrak{H}_{tb} = \mathfrak{H}_{uc} = A_{u}\mathfrak{H}_{c},$$

and since $c \in \mathfrak{F}_a$, $\mathfrak{F}_c = \mathfrak{F}_a$. Thus $\mathfrak{F}_b = A_u \mathfrak{F}_a$. Now let *a* and *b* be arbitrary regular element. Since the set of all regular elements is connected, we see by continuity that there exists an inner automorphism *A* such that $A\mathfrak{F}_a = \mathfrak{F}_a$.

Thus we have proved the following.

Theorem. Let \mathfrak{H} and \mathfrak{H}' be two maximal nilpotent subalgebras containing regular elements of a Lie algebra \mathfrak{L} over the field of complex numbers. Then there exists an inner automorphism A such that $\mathfrak{H}'=A\mathfrak{H}$. The Cartan decomposition of \mathfrak{L} is unique up to inner automorphisms of \mathfrak{L} .

Added in proof (May 2, 1950).

After the present note was submitted to the Proc. of Acad. of Japan, I was made aware through Mathematical Reviews that the result in the present note had been already proved by C. Chevalley in his paper, "An algebraic proof of a property of Lie groups," Amer. J. Math. v. 63 (1941). But I assume that my approach is different from his.