16. Fundamental Theory of Toothed Gearing (I).

By Kaneo YaMada.
Department of Applied Dynamics, Tôhoku University, Sendai.
(Comm. by T. Kubota, m.J.A., Feb. 12, 1949.)

Suppose that two plane curves K_{1} and K_{2} roll without sliding mutually one along the other, and let F_{1} and F_{2} which roll, in accordance with the rolling motion of K_{1} and K_{2}, with sliding mutually one along the other be the two plane curves invariably connected with K_{1} and K_{2} respectively. $\quad K_{1}$ and K_{2} are called the corresponding pitch curves, and F_{1} and F_{2} the corresponding profile curves. Furthermore, we shall call any two points of K_{1} and K_{2} which may fall on each other at the rolling motion of K_{1} and K_{2} the corresponding pitch points, and especially a point at which K_{1} and K_{2} are touching at a certain instant the common pitch point at the instant.

From now on we confine ourselves to deal with such continuous (pitch or profile) curves as at each of points on them a single tangent may be drawn continuously (although cusps are allowed to exist), and suppose that they touch each other always at one point during the motion.
§ 1. Necessary and sufficient conditions for profile curves (1).
As a necessary condition that two curves F_{1} and F_{2} invariably connected with two pitch curves K_{1} and K_{2} respectively be a pair of profile curves the following Descartes' theorem (a) is well known.
(a) The common normal to the curves F_{1} and F_{2} at any point of contact of them always passes through a common pitch point

From the condition (a) we obtain the following necessrry and sufficient condition for profile curves.

Theorem 1. A necessary and sufficient condition that two curves F_{1} and F_{2} invariably connected with two pitch curves K_{1} and K_{2} respectively be a pair of profile curves is that two perpendiculars from any common pitch point to F_{1} and F_{2} coincide with each other in the direction and in the length to their feet.

As a nesessary condition that a curve F settled at one K of pitch curves K_{1} and K_{2} be a profile curve, that is, there exists a corresponding curve to F which makes sliding contact motion with F, we can derive directly the following condition (b) from the condition (a).
(b) The curve F is an envelope of a family of circles, each of which
has its center on the curve K and touch F at one point.
We can not assure that F has, in this case, no common point other than the point of contact with any circle of the family. Further it should be remarked that there appear two envelopes of a family of circles with centers on a curve K, if they exist, and that two feet of perpendiculars drawn from an arbitrary point P on K to these two envelopes take symmetric positions as regards the tangent to K at P.

Now we shall say two families of circles are developable from one upon another, if they consist of circles having centers at corresponding pitch points on K_{1} and K_{2} and equal radi.

From the condition (b) we have the following necessary and sufficient condition:

Theorem 2. A necessary and sufficient condition that two curves F_{1} and F_{2} invariably connected with two pitch curves K_{1} and K_{2} respectively be a pair of profile curves is that they be a pair of suitably chosen envelopes of two families of circles being developalle upon each other having centers on the curves K_{1} and K_{2}.

Proof of sufficiency. From the envelopes settled at K_{1} and K_{2} we shall choose and assort such two those as two feet of perpendicular drawn from each of common pitch points P to the envelopes exist on the same side of the common tangent of K_{1} and K_{2} at the point P, and denote them by F_{1} and F_{2}. It is evident that the perpendiculars from the point P to such curves F_{1} and F_{2} have equal lengths. Further their directions coincide likewise as we shall verify in the following report (II), § 1.

From Theorem 2 we can easily derive the following theorem concerning the interchangeability of profile curves.

Given three curves K_{r}, K_{1} and K_{2} which are all tou:hing at the same one point and starting from this position may roll without sliding along one another. Let F_{r} and F_{1} be a pair of profile curves invariably connected with the pitch curves K_{r} and K_{1}, and similarly F_{r} and F_{2} with K_{r} and K_{2}. Then F_{1} and F_{2} are a pair of profile curves having K_{1} and K_{2} as a pair of pitch curves.

As a special case of this theorem we obtain the the following Camus', when the curve F_{r}, is reduced to a point C.

Given three curves K_{r}, K_{1} and K_{2} which are all touching at the same one point and starting from this position may roll without sliding along one an
other. Let F_{1} and F_{2} be the roulettes draum by the same one point C invariably connected with the curve K_{r} when K_{r} makes rolling contact motion along K_{1} and K_{2} respectively. Then the curves F_{1} and F_{2} are a pair of profile curves having K_{1} and K_{2} as a pair of pitch curves.

In addition, in this case, assume in particular K_{1} be a circle and K_{r} be a circle with a radius half of K 's, and choose the drawing point C on the perimeter of K_{r} then the roulette F_{1} becomes a diameter of K_{1}. Accordingly we have the ollowing Chasles' theorem:

The curve generated by a diameter of a circle K_{1} during rolling contact motion of K_{1} along any curve K_{2} coincides with the roulette drawn by a fixed point on a circle K_{r} with a radius half of K_{1} 's when K_{r} makes rolling contact motion along K_{2}.

Now we may consider the condition (b) as a mere condition for a curve F settled at a pitch curve K. From the condition (b) we can derive the following condition:
(c) Two normals of the curve F at any two points on F do not pass through the same pitch point.

Accordingly, to any respective point on F there corresponds one pitch point on K.

The condition (c) is obviously equivalent to the following condition:
(d) When a point runs on the curve F to a certain direction the pitch point corresponding to it runs on the curve K also to a definite direction.

At this time there may take place one of the following three cases, namely, the case when the normals drawn at any two points of F intersect by no means before they arrive at the pitch points corresponding to those, or the case when they always intersect, or the case different from the former two. We shall say that the curve F is of positive type in the first case, negative type in the second case, and monotype in general term for these two types. In the last case we may consider the curve F consisting of several monotypical curves and we shall say that F is of mixed type.

Now suppose that the curves K and F satisfying the relation of the condition (d) are given. Take the points $C, C^{\prime}, C^{\prime \prime}, \ldots \ldots, C^{(n)}, C^{(n+1)}, \ldots \ldots$ starting from an arbitrary point C on the curve F to a definite direction one after another, then the points $P, P^{\prime}, P^{\prime \prime}, \ldots \ldots, P^{(n)}, P^{(n+1)}, \ldots \ldots$ on the curve K which run also to a definite direction are defined in correspondence to those. Next, we shall rotate the given figure at any point $P^{(n)}$ as a center until the straight line $P^{(n)} C^{(n+1)}$ is reached to the original position of the straight line
$P^{(n)} C^{(n)}$, and denote by $Q^{(n+1)}$ the position taken by the point $P^{(n+1)}$. By means of this operation there correspond the points $Q^{\prime}, Q^{\prime \prime}, Q^{\prime \prime \prime}, \ldots .$. to the points $P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}, \ldots .$. respectively. After returning the figure to the original position we shall rotate it again at the point P as a center and put the point P^{\prime} upon the point Q^{\prime} denoting it newly by R^{\prime}, and denote by $R^{\prime \prime}$ the position taken at this time by the point $Q^{\prime \prime}$. And next, starting from this state we rotate the figure at the point R^{\prime} as a center until the point $P^{\prime \prime}$ is put upon the point $R^{\prime \prime}$ and denote by $R^{\prime \prime \prime}$ the position taken at this time by the point $Q^{\prime \prime \prime}$. Repeating this operation succesively we get a polygonal line $P R^{\prime} R^{\prime \prime} \ldots .$. starting from the point P. The circumstance is the same when we set the dividing points of F in the opposite direction starting from C. When we increase indefinitely the number of the dividing points of F and let the distance of any two adjacent points tend to zero, we may have a limiting curve K_{r} touching the curve K at the point P. The curve F is given as a roulette drawn by the point C when the curve K_{r} rolls along the curve K without sliding. Thus we find the following property (e) of the curve satisfying the condition (d).
(e) The curve F is a roulette drawn by a rolling curve and a drawing point suitably taken using the curve K as a base curve.

It should not be difficult to understand that from the condition (e) for the curve F follows the condition (b), consequently the four conditions (b), (c), (d) and (e) are all equivalent to one another. Moreover, when we roll the curve K_{r} defined by the condition (e) along the mate of the pitch curve K without sliding we get one more roulette drawn by the same drawing point C. This roulette and the curve F are a pair of profile curves by the Camus' theorem Hence the condition (e) is a necessary and sufficient condition that the curve F is a profile curve and consequently each of the conditions (b), (c) and (d) equivalent to (e) is so. Thus we have

Theorem 3. A necessary and sufficient condition that a curve F invariably connected with one K of pitch curves K_{1} and K_{2} be a profile curve is (b): the curve F is an envelope of a family of circles, each of which has its center on the curve K and touch F at one point, or (c): two normals of the curve F at any two points on it do not pass through the same pitch point, or (d): when a point runs on the curve F to a certain direction, the pitch point corresponding to it runs on the curve K also to a definite direction, or (e): the curve F is a roulette drawn by a rolling curve and a drawing point suitably defined using K as a base curve.

It is not necessary to give the notice that each of the given profile curves F_{1}
and F_{2} composing of a pair is a roulette drawn by the same rolling curve and drawing point with the pitch curves K_{1} and K_{2} as the base curves respectively.

In conclusion we shall consider a parallel curve F^{*} of a given profile curve F. For example, the condition (d) is evidently satisfied for the curve F^{*} as for the original curve F, and so by Theorem 3 we get the following theorem:

Any parallel curve of a given profile curve is also a profile curve for the original pitch curve.
§ 2. Necessary and sufficient condition for profile curves (2).
In the case that the curve F is particularly of monotype we can derive the following sharper property (b)* of F than (b).
(b)* The curve F is such an envelope of a family of circles with centers on the curve K as each of the circles touch F at one point and has no common point with F except the point of contact.

Proof. Let S be a circle of the given family, P ba the center of S, and C be the point of contact of S and F. Now suppose that F and S have common points other than C, and denote the nearest point of them to C on the curve F by D. As the curve F is of monotype, there exists no cusp between the points C and D. And then there appears one of the three cases that D is not an end point of F but F and S touch at D, or F and S intersect at D, or D is an end point of F and falls just on S. In the first case the normal of F at this point D passes through the pitch point P on the contrary of the property (c) of F. In the second case we denote the points of intersection of a half-straight line starting from P and the curves F and S by X and Y respectively, and the angle between the tangents to F and S at these points respectively by τ. The value of τ varies continuously. At the point $C \quad \tau=0$ and in the neighbourhood on the D point side of the point $C \quad \tau>0$ or $\tau<0$ and at $D \quad \tau<0$ or $\tau>0$ correspondingly. Therefore we have at least one point X between C and D on F at which point $\boldsymbol{\tau}=0$. At such point X the normal to F passes again through the point P. In the last case when D is an end point of F it leads to the same contradiction. Hence the condition (b)* must be satisfied.

It is no doubt that the condition (b) should be derived from the condition (b)*. Moreover, of course, a curve F having the property of the condition (b)* is of monotype. Thus we obtain the following:

Theorem 4. A necessary and sufficient condition that a curve F invariably connected with the pitch curve K be a profile curve of monotype is that F is such an envelope of a family of circles with centers on K as each of the
circles touchs F at one point and has no common point with F except the point of contact.

In conclusion I express my hearty thanks to Prof. T. Kubota, M.J.A., who has given me kind guidance for the researches, and in addition I am obliged to him for communicating this paper.

