48. On the Theory of Conformal Transformations between two Rheonomic Spaces.

By Michiaki Kawaguchi.
(Comm. by Kubota, m. J. A., July 12, 1949.)
Introduction. Defining the conformal transformations in a rheo nomic space of A. WUNDHEILER ${ }^{1}$ we state in the present paper the conformal invariants and introduce four special rheonomic spaces (rheonomic space without stretching, sub-rheonomic space, quasirheonomic space, rheonomic flat space). By the help of these invariants we find also the conditions for that a rheonomic space be conformal to one of these spaces and the conformal properties of sub-space.
\S 1. The conformal parameters of connection. Let V_{n} be an n-dimensional rheonomic space whose fundamental differential form is given by

$$
\begin{equation*}
d s^{2}=a_{i j} d x^{i} d x^{j}+2 a_{i} d x^{i} d t+A d t^{2} \tag{1.1}
\end{equation*}
$$

and whose parameters of connection

$$
\begin{aligned}
I_{i j}^{k} & =\frac{1}{2} a^{k \hbar}\left(\partial_{i} a_{j h}+\partial_{j} a_{h i}-\partial_{h} a_{i j}\right), \\
I_{i}^{l k} & =\frac{1}{2} a^{k h}\left(\partial_{t} a_{i h}+\partial_{i} \alpha_{h}-\partial_{h} \alpha_{i}\right)
\end{aligned}
$$

We consider the case that points of the domains D, \bar{D} of the two rheonomic spaces, V_{n}, \bar{V}_{n}, are in one-to-one correspondence to each other in such a way that the following relation holds good:

$$
\begin{equation*}
d \bar{s}=\sigma d s \tag{1.2}
\end{equation*}
$$

that is,

$$
\bar{a}_{i j}=\sigma^{2} a_{i j}, \quad \bar{\alpha}_{i}=\sigma^{2} \alpha_{i}, \quad \bar{A}=\sigma^{2} A
$$

where σ may be a function of x^{i}, t. In this case we say that the correspondence between the two spaces is conformal in the domains D, \bar{D} and that the transformation from one space to the other is a

[^0]conformal transformation. Then the parameters of connections $\Gamma_{i j}^{l j}$, Γ_{i}^{l} in V_{n} and $\bar{\Gamma}_{i j}^{k}, \bar{I}_{i}^{k}$ in \bar{V}_{n} are related by
\[

$$
\begin{align*}
& \bar{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\delta_{i}^{k} \sigma_{j}+\delta_{j}^{k} \sigma_{i}-\sigma^{k} a_{i j}, \tag{1.3}\\
& \bar{\Gamma}_{i}^{k}=\Gamma_{i}^{k}+\delta_{i}^{k} \sigma_{t}-a^{k} \sigma_{i},-a_{i} \sigma^{k}
\end{align*}
$$
\]

where $\sigma_{j}=\partial_{j} \log \sigma, \sigma_{t}=\partial_{t} \log \sigma, \sigma^{k}=\alpha^{k j} \sigma_{j}, \alpha^{k}=\alpha^{k j} \alpha_{j}$. We obtain after a contraction in (1.3)

$$
\begin{equation*}
\sigma_{j}=\frac{1}{n}\left(\bar{\Gamma}_{o j}^{o}-\Gamma_{o j}^{g}\right), \quad \sigma_{t}=\frac{1}{n}\left(\bar{\Gamma}_{g}^{g}-\Gamma_{g}^{g}\right) . \tag{1.4}
\end{equation*}
$$

Putting (1.4) in (1.3) we have two conformal invariants

$$
\begin{equation*}
K_{i j}^{k}=\Gamma_{i j}^{k}-\frac{1}{n} \delta_{i}^{k} \Gamma_{o j}^{j}-\frac{1}{n} \delta_{j}^{k} \Gamma_{g i}^{g}+\frac{1}{n} a^{k h} \Gamma_{j n}^{g} a_{i j}, \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
K_{j}^{k}=\Gamma_{j}^{k}-\frac{1}{n} \alpha^{k} \Gamma_{\partial j}^{g}-\frac{1}{n} \delta_{j}^{k} \Gamma_{o}^{g}+\frac{1}{n} \alpha^{k h} \Gamma_{g h}^{g} \alpha_{j} \tag{1.6}
\end{equation*}
$$

which are called the rheonomic conformal parameters of connection. (1.5) is the same form as the T. Y. Thomas's conformal parameters of connection in Riemannian geometry. Corresponding to $\Gamma_{i}^{* / k}=\Gamma_{i}^{k}-$ $\alpha^{j} \Gamma_{i j}^{l}$ which appears in the expression of the covariant differential of a strong vector ${ }^{1)}$

$$
\delta v^{k}=d v^{k}+\Gamma_{i j}^{k} \delta x^{j} v^{i}+\Gamma_{i}^{* k} v^{i} d t
$$

where exists the invariant

$$
K_{i}^{* k}=K_{i}^{h}-\alpha^{h} K_{i h}^{b}
$$

which is essential in our theory. In consequence of the changes of $\Gamma_{i j}^{l}, \Gamma_{i}^{l}, a_{i j}, \alpha_{i}, \Gamma_{g j}^{g}, \Gamma_{g}^{g}$ under rheonomic transformations $x^{\prime}=x^{\prime}(x, t)$:

$$
\begin{align*}
\Gamma_{i j}^{\prime k} & =\frac{\partial x^{\prime k}}{\partial x^{m}}\left(\frac{\partial x^{h}}{\partial x^{\prime j}} \frac{\partial x^{g}}{\partial x^{\prime i}} \Gamma_{h g}^{m}+\frac{\partial^{2} x^{m}}{\partial x^{\prime j} \partial x^{\prime i}}\right), \\
\Gamma_{i}^{\prime h} & =\frac{\partial x^{\prime k}}{\partial x^{m}}\left(\frac{\partial x^{h}}{\partial x^{\prime i}} \frac{\partial x^{g}}{\partial t^{\prime}} \Gamma_{h g}^{m}+\frac{\partial x^{h}}{\partial x^{h}} \Gamma_{h}^{m}+\frac{\partial^{2} x^{m}}{\partial x^{\prime j} \partial t^{\prime}}\right), \\
\alpha_{i k}^{\prime} & =\frac{\partial x^{l}}{\partial t^{\prime i}} \frac{\partial x^{m}}{\partial x^{\prime k}} a_{l m}, \quad \alpha_{i}^{\prime}=\frac{\partial x^{l}}{\partial x^{\prime i}} \frac{\partial x^{m}}{\partial t^{\prime}} a_{l m}+\frac{\partial x^{l}}{\partial x^{\prime i}} a_{l}, \tag{1.7}\\
\Gamma_{g j}^{\prime g} & =\frac{\partial x^{h}}{\partial x^{\prime j}} \Gamma_{l h}^{l}+\partial_{i}^{\prime} \log \Delta
\end{align*}
$$

1) A. Wundheiler named it "Stark Vektor".

$$
\Gamma_{g}^{\prime g}=\frac{\partial x^{h}}{\partial t^{\prime}} \Gamma_{l h}^{\iota}+\Gamma_{l h}^{l}+\partial_{t}^{\prime} \log \Delta, \quad \Delta=\left|\frac{\partial x^{i}}{\partial x^{\prime / k}}\right|
$$

resp.
these invariants are transformed as follows:

$$
\begin{aligned}
K_{h b}^{\prime g}= & \frac{\partial x^{\prime g}}{\partial x^{h}}\left(\frac{\partial x^{i}}{\partial x^{\prime h}} \frac{\partial x^{i}}{\partial x^{\prime l}} K_{i j}^{k}+\frac{\partial^{2} x^{l}}{\partial x^{\prime h} \partial x^{\prime l}}\right)-\frac{2}{n} \delta_{(h}^{g} \psi_{i)}^{\prime}+\frac{1}{n} a^{\prime g m} \psi_{m}^{\prime} a_{h l}^{\prime},{ }^{\prime \prime} \\
K_{h}^{\prime g}= & \frac{\partial x^{\prime g}}{\partial x^{g}}\left(\frac{\partial x^{i}}{\partial x^{\prime h}} \frac{\partial t^{j}}{\partial t^{\prime}} K_{i j}^{k}+\frac{\partial x^{i}}{\partial x^{\prime h}} K_{i}^{k}+\frac{\partial^{2} x^{\prime}}{\partial x^{\prime h} \partial t^{\prime}}\right) \\
& -\frac{1}{n} \psi_{h}^{\prime} \boldsymbol{\alpha}^{\prime \prime g}-\frac{1}{n} \psi_{i}^{\prime} \delta_{n}^{g}+\frac{1}{n} \psi_{m}^{\prime} a^{\prime g m} \alpha_{h}^{\prime}
\end{aligned}
$$

where $\psi_{i}^{\prime}=\partial_{l}^{\prime} \log \Delta, \psi_{t}^{\prime}=\partial_{t}^{\prime} \log \Delta$. Consequently we can find easily the transformed formulas of $K_{i}^{* / k}=K_{i}^{\prime k}-\alpha^{\prime h} K_{i j}^{\prime k}$.
$\S 2$. The conformal stretch tensor. Rheonomic spaces being conformal to that without stretching. Under conformal transforma_ tions the stretch-tensor

$$
\begin{equation*}
\left.W_{i j}=\frac{1}{2}\left(\partial_{t} \alpha_{i j}-\alpha_{j / i}-\alpha_{2 / j}\right)^{2}\right) \tag{2.1}
\end{equation*}
$$

varies in the rule

$$
\begin{equation*}
\bar{W}_{i j}=\sigma^{2}\left\{W_{i j}+a_{i j}\left(\sigma_{t}-\alpha^{h} \sigma_{h}\right)\right\}, \tag{2.2}
\end{equation*}
$$

by the help of

$$
\left.\bar{\alpha}_{j / 6}=\sigma^{2}\left(\alpha_{j / \hbar}+2 a_{[j} \sigma_{i]}+\alpha^{h} \sigma_{h} \alpha_{i j}\right) .{ }^{3}\right)
$$

Multiplying $\bar{a}_{i j}$ and summing up with respect to i, j, (2.2) gives us

$$
\begin{equation*}
\sigma_{t}-a^{h} \sigma_{h}=\frac{1}{n}(\bar{W}--W), \quad \text { where } \quad W=W_{i j} a^{i j} \tag{2.3}
\end{equation*}
$$

Substituting (2.3), (2.2) goes into

$$
\begin{equation*}
\bar{W}_{i j}-\frac{1}{n} \bar{a}_{i j} \bar{W}=\sigma^{2}\left(W_{i j}-\frac{1}{n} a_{i j} W\right) \tag{2.4}
\end{equation*}
$$

Since

$$
\bar{T}=\bar{A}-\bar{\alpha}_{i} \bar{\alpha}^{i}=\sigma^{2} A-\sigma^{2} \alpha_{i} \alpha^{i}=\sigma^{2} T
$$

1) $\delta_{\left({ }_{h} \psi^{\prime}\right.}^{l}{ }_{l}=\frac{1}{2}\left(\delta_{h}^{\eta} \psi_{l}^{\prime}+\delta_{l}^{?} \psi^{\prime}{ }_{h}\right)$.
2) This is nothing but WundHeiler's "Dehnungstensor" and $\alpha_{i / j}=\partial_{j} \alpha_{t}-\Gamma^{k}{ }_{t j} ; a_{k}$.
3) $\alpha_{[j ;} \sigma_{i]}=\frac{1}{2}\left(\alpha_{j} \sigma_{i}-\alpha_{i} \sigma_{j}\right)$.
we have

$$
\begin{equation*}
\frac{1}{\bar{T}}\left(\bar{W}_{i j}-\frac{1}{n} \bar{a}_{i j} \bar{W}\right)=\frac{1}{T}\left(W_{i j}-\frac{1}{n} a_{i j} W\right) . \tag{2.5}
\end{equation*}
$$

This conformal invariant is a strong tensor, which is called the conformal stretch tensor and denoted by $\Omega_{i j}$.

From $\bar{W}_{i j}=0$, it follows $\Omega_{i j}=0$. Inversely if $\Omega_{i j}=0$, we consider the differential equation

$$
\begin{equation*}
-\frac{1}{n} W=\sigma_{t}-\alpha^{n} \alpha_{h} \tag{2.6}
\end{equation*}
$$

whose solution exists always and this solution σ makes $\bar{W}_{i j}$ equal to zero. Consequently

Theorem 1. The vanishing of the conformal stretch tensor is the necessary and sufficient condition that a rheonomic space be conformal to that without stretching.
§3. Rheonomic flat space. Sub-rheonomic space and quasirh onomic space. In a rheonomic space the curvature is defined by

$$
\begin{equation*}
(\bar{\delta} \delta-\delta \bar{\delta}) u^{i}=R_{j k l}^{i}(x, t) u^{j} \bar{\delta}_{x}^{k} \delta_{x}^{l}+R_{j k}^{i}(x, t) u^{j}\left(\bar{\delta}_{x}^{k} d t-\delta_{x}^{k} d t\right) \tag{3.1}
\end{equation*}
$$

where u^{i} is a strong vector and $\delta, \bar{\delta}$ are two arbitrary dispacements. In the case $d t=0, d t=0$, (3.1) has the form

$$
(\delta \bar{\delta}-\delta \overline{\bar{s}}) u^{i}=R_{j k l}^{s}(x, t) u^{j} \overline{d x^{t}} d x^{l}
$$

When $R_{j k l}^{i}(x, t)$ is equal to zero, the virtual space is a flat space. We shall call the rheonomic space with $R_{j k l}^{i}=0$ the rheonomic flat space. For the dispacements $\delta x^{t}=0, \overline{d t}=0$, (3.1) is reduced into

$$
(\bar{\delta} \delta-\delta \bar{\delta}) u^{i}=R_{i k}^{i}(x, t) u^{j} d x^{h} d t
$$

which vanishes foc $R_{j k}^{i}(x, t)=0$. In the Canal ${ }^{1}$) space the last equation means the flatness of any surfaces whose 2-direction contains the direction of trajectory. The rheonomic space with $R_{j b}^{i}=0$ will be named the sub-rheonomic space.

The definitions of $R_{h k}^{i}$, $W_{i j}$, lead us to the important relation

$$
\begin{equation*}
R_{n i}^{k}=a^{k l}\left(W_{i l / \hbar}-W_{i \hbar / k}\right) . \tag{3.2}
\end{equation*}
$$

Hence we have

[^1]Theorem 2. $R_{n i}^{k}$ can be represented by derivatives of the stretchtensor $W_{i j}$ and $a_{i j}$.

Let us call the rheonomic space with $W_{i j / b}=0$ the quasi-rheonomic space, then we obtain the following theorem

Theorem 3. A sub-rheonomic space is a particular quasi-rhenomic space, and a quasi-rheonomic space is a particular rheonomic space without stretching.
§ 4 The condition that a rheonomic space be conformal to one of the other three special ones.

1. By using the same method as that in Riemannian geometry ${ }^{11}$, we can conclude that

Theorem 4. The necessary and sufficient condition that a V_{n} for $n>2$ be mapped conformally on a rheonomic flat space is that the conformal rheonomic curvature tensor

$$
C_{n i j}^{k}=R_{n i j}^{k}-\frac{2}{n-2}\left(R_{n[i} \delta_{j]}^{k}+a_{k[i} R_{i j}^{k}\right)+\frac{2 R}{(n-1)(n-2)} a_{k[i} \delta_{j]}^{k}
$$

be a zero tensor when $n=3$ and when $n>3$ that

$$
C_{n i j}=(n-3) C_{n i j / k}^{l / t}
$$

be a zero tensor.
2. Under the conformal transformations $W_{i j / k}$ varies in the rule

$$
\begin{equation*}
\bar{W}_{i j / l}=\sigma^{2}\left[W_{i j / l}+a_{i j} T_{1 k}-2 W_{l(j)} \sigma_{i)}+2 W_{l(j} \sigma^{l} a_{i) k}\right] \tag{4.1}
\end{equation*}
$$

where $T_{1 k}=\left(\sigma_{t}-\alpha^{h} \sigma_{h}\right)_{1 k}$. Multiplying by $\bar{a}_{i j}$ and summing with respect to i, j, we obtain from (4.1)

$$
\begin{equation*}
T_{1 k}=\frac{1}{n}\left(\bar{a}_{i j} \bar{W}_{i j / k}-a^{i j} W_{i j, k}\right) . \tag{4.2}
\end{equation*}
$$

Substituting (4.2) in (4.1), we have

$$
\begin{align*}
\bar{W}_{i j / k}^{*} & =\sigma^{2}\left[W_{i j / b}^{*}-2 W_{k(j} \sigma_{i)}+2 W_{l(j} \sigma^{l} \alpha_{i) k}\right] \tag{4.3}\\
& =\sigma^{2}\left[W_{i j / k}^{*}-2 W_{k(j}^{*} \sigma_{i)}+2 W_{l(j}^{*} \sigma^{l} \alpha_{i) k}\right], \quad \text { where } \\
W_{i j}^{*} & =W_{i j}-\frac{1}{n} a_{i j} W .
\end{align*}
$$

Multiplying by $\bar{a}^{j k}$ and summing with respect to j, k, the last equation gives rise to

[^2]\[

$$
\begin{equation*}
\bar{a}^{j k} W_{\imath j / k}^{*}=a^{j k} W_{i j / k}^{*}+n W_{i i}^{*} \sigma^{l} . \tag{4.4}
\end{equation*}
$$

\]

a) When the rank of ($W_{i j}^{*}$) is n, it follows from (4.4)

$$
\begin{equation*}
\sigma^{k}=\frac{1}{n} \bar{W}_{i l l}^{* l} \bar{W}^{* / i k} \sigma^{2}-\frac{1}{n} W_{\Delta \imath l}^{* l} W^{* / i t}, \tag{4.5}
\end{equation*}
$$

$W^{* / j l}$ being determined from $W_{i l}^{*} W^{* / j l}=\delta_{i}^{j}$. From (2.3) we have

$$
\begin{equation*}
\sigma_{t}=a^{h} \sigma_{h}+\frac{1}{n}(\bar{W}-W) \tag{4.6}
\end{equation*}
$$

Substituting (4.5) in (4.3) we get the conformal invariant

$$
I_{j, k}^{i}=a^{i r}\left(W_{r j / k}^{*}+\frac{2}{n} W_{k(j}^{*} W_{r \mid}^{* \prime}{ }^{l} W_{l m}^{*}{ }^{m}-\frac{2}{n} W_{l\left(j l^{\prime}\right.}^{*} a_{r) k}\right)
$$

Now we put $\bar{W}_{i j / k}=0$ in (4.1), (4.2), (4.3), (4.4) and (4.5), and denote them (4.1'), (4.2'), (4.3'), (4.4') and (4.5') resp.. For that (4.5') satisfy (4.1') it is necessary that $\Pi_{j / k}^{2}=0$. The conditions of integrability of (4.5') and (4.6') are

Hence we have the theorem
Theorem 5. The necessary and sufficient condition that a rheo_ nomic space be mapped conformally on a quasi-rheonomic space that $\Pi_{j / k}^{i}=0$ and (4.7') de satisfied.
b) When the rank of ($W_{\text {ij }}^{\text {\% }}$) is $<n, \neq 0$, from (4.3'), (4.4')

$$
0=W_{i j / k}^{+}-\frac{2}{n} a_{k / l} W_{j) l l}^{*} l-2 W_{k(j)}^{k} a_{i) l} \sigma^{l}
$$

Now we shall denote the rank of the matrix $\left(W_{k(j)} \alpha_{i) 1}, W_{k(j)} a_{i) 2}, \ldots\right.$, $W_{k(j} \alpha_{\left.i)_{n}\right)}$ with α. When $\alpha=n$, we can find the condition in the same way as the previous a). When $\alpha<n$, the differential equations (4.8') have their solution always, hence it requires no condition. When $\alpha>n$, there exists no conformal transformatiou which satisfies (4.8').
3. Under conformal transformations $R_{n i}^{k}$ varies in the rule
(4.9) $\quad \bar{R}_{n i}^{k}=\bar{a}^{k l}\left(\bar{W}_{i l / \hbar}-\bar{W}_{i n l l}\right)$

$$
\begin{aligned}
& =R_{h i}^{k}+2 a^{k l} a_{i[l} T_{f l]}-2 a^{k l} W_{i[n} \sigma_{l]}+2 W_{m[l} \sigma^{m} a_{n] c} a^{k l} . \\
& =R_{n i}^{k}+2 \alpha^{k l} a_{i[2} T_{j h]}-2 a^{k l} W_{i[h}^{*} \sigma_{l]}+2 W_{m[l}^{*} \sigma^{m} a_{n] l} a^{k l} .
\end{aligned}
$$

Putfing $k=i$ in (4.9) and summing with respect to k, we have

$$
\begin{equation*}
\left.T_{/ h}=\frac{1}{n-1}\left\{\bar{R}_{n k}^{k}-R_{n k}^{k}\right)-n \sigma^{m} W_{m h}^{*}\right\} . \tag{410}
\end{equation*}
$$

Substituting (4.10) in (4.9) we get

$$
\begin{align*}
\bar{R}_{h i}^{k}- & \frac{\delta_{i}^{k}}{n-1} \bar{R}_{h k}^{b}+\frac{1}{n-1} \bar{a}_{i \hbar} a^{k l} \bar{R}_{l j}^{j}=R_{h i}^{k}-\frac{\delta_{i}^{k}}{n-1} R_{h l}^{k} \tag{4.11}\\
& \quad+\frac{1}{n-1} a_{i \hbar} a^{k l} R_{l j}^{j}+\sigma^{m}\left(\frac{1}{n-1} \delta_{i}^{k} W_{m h}^{*}-\frac{1}{n-1} a_{i h} a^{k l} W_{m l}^{*}\right. \\
& \left.-\delta_{m}^{k} W_{i \hbar}^{*}+a^{k l} W_{i l}^{*} a_{h m}\right)
\end{align*}
$$

When $\bar{R}_{h i}^{k}=0$, the left hand side in (4.11) is equal to zero. The same discussion as that in $\S 2$. gives the condition that a rheonomic space be mapped conformally on a sub-rheonomic space.
§5. Conformal properties of sub-space. Let the sub-space V_{m} in a rheonomic space V_{n} be defined by

$$
\begin{equation*}
u^{\alpha}=u^{\alpha}\left(x^{i}, t\right) \quad \alpha=1, \ldots, m \tag{5.1}
\end{equation*}
$$

then the metric functions of V_{m}

$$
a_{\alpha \beta}=b_{\alpha}^{i} b_{\beta}^{j} a_{i j}, \quad a_{\alpha}=b_{\alpha}^{i} b_{\imath}^{j} a_{i j}+b_{\alpha}^{k} a_{k}, \quad \text { where } \quad b_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}},
$$

are transformed as follows

$$
\begin{equation*}
\bar{\alpha}_{\alpha \beta}=\sigma^{2} a_{\alpha \beta}, \quad \bar{\alpha}_{\chi}=\sigma^{2} \alpha_{\alpha} \tag{5.2}
\end{equation*}
$$

by a conformal transformation. In use of (5.2) $\Gamma_{\beta r}^{\alpha}, \Gamma_{\beta}^{\alpha}$ vary into

$$
\begin{align*}
& \bar{\Gamma}_{\beta \gamma}^{\alpha}=I_{\beta \gamma}^{\alpha}+\delta_{\beta}^{\alpha} \sigma_{\gamma}+\delta_{\gamma}^{\alpha} \sigma_{\beta}-\sigma^{\alpha} a_{\beta r}, \tag{5.3}\\
& \bar{\Gamma}_{\beta}^{\alpha}=I_{\beta}^{\alpha}+\delta_{\beta}^{\alpha} \sigma_{t}+\alpha^{\alpha} \sigma_{\beta}-\alpha_{\beta} \sigma^{\alpha},
\end{align*}
$$

where $\sigma_{\alpha}=b_{\alpha}^{i} \sigma_{i}$. Let D_{α} be D-symbol and $D_{t} b_{\alpha}^{i}=b_{\alpha}^{k} \nabla_{t} b_{k}^{i}=b_{\alpha}^{k}\left(b_{k t t}^{i}+\right.$ $a^{j} b_{k}^{2} / j$), then the Euler-Schouten's tensors

$$
H_{\alpha \beta}^{i}=D_{\alpha} b_{\beta}^{i}, \quad H_{\alpha}^{i}=D_{t} b_{\alpha}^{i}
$$

are transformed in the rule

$$
\begin{equation*}
\bar{H}_{\alpha \beta}^{i}=\partial_{\beta} b_{\alpha}^{i}+b_{\alpha}^{k} b_{\mathrm{e}}^{i} \bar{I}_{k \hbar}^{i}-b_{\gamma}^{i} \bar{I}_{\alpha \beta}^{r}=H_{\alpha \beta}^{i}-a_{\alpha \beta}^{i}\left(a^{i j}-b_{\gamma}^{i} b_{\delta}^{j} g^{r \delta}\right) \sigma_{j}, \tag{5.4}
\end{equation*}
$$

(5.5) $\quad \bar{H}_{\alpha}^{t}=b_{\alpha}^{k} \nabla_{t} b_{b}^{i}=H_{a}^{t}$
by a conformal transformation.
The conformal invariant produced from (5.4) is

$$
M_{\alpha \beta}^{i}=H_{a \beta}^{i}-\frac{1}{m} a_{\alpha \beta} a^{\gamma \delta} H_{\gamma \delta}^{i},
$$

whereas the relation $M_{\alpha \beta}^{i}=0$ is also invariant conformally, that is, in the terms of geometry

Theorem 6. Under conformal transformations the umbilic points of a rheonomic sub-space is invariant conformally and consequently a total umbilic surface is also same.

Since H_{α}^{t} is a conformal invariant, the relation $H_{\alpha}^{t}=0$ is invarian conformally. From that follows

Theorem 7. The property that b_{a}^{2} is parallel along t-curve remain unaltered under conformal transformations.

[^0]: 1) Cf. A. Wundheiler, Rheonome Geometrie. Absolute Mechanik. Prace Mathematyczno-Fizycyne, 40. (1932), pp. 97-142.
[^1]: 1) A WUNDHEILER; the previous paper. §9.
[^2]: 1) Cf. L. P. Eisenhart ; Riemannian Geometry p. 89.
