67. A Note on Extensions of Groups.

By Hiroshi NAGAO.

(Comm. by Z. SUETUNA, M. J. A., Nov. 12, 1919.)

1. If a group \mathfrak{G} contains a normal subgroup \mathfrak{N} and $\mathfrak{G}/\mathfrak{N}$ is isomorphic to \mathfrak{A} , we call \mathfrak{G} an *extension of* \mathfrak{N} by \mathfrak{A} . The problem of extension is to obtain all extensions of \mathfrak{N} by \mathfrak{A} when \mathfrak{N} and \mathfrak{A} are given. The conditions to determine every extension were at first given by O. Schreier¹⁾ and afterwards by K. Shoda²⁾ in another way.

This note is devided in two parts. In section 2, we shall show that the problem of extension can be reduced in a sense to the case when \mathfrak{N} is abelian, and in section 3, we shall consider central extensions of \mathfrak{N} by \mathfrak{A} under the assumption that \mathfrak{N} and \mathfrak{A} are both abelian, where an extension of \mathfrak{N} by \mathfrak{A} is called a *central extension* when \mathfrak{N} is contained in its center.

2. From the theorem of O. Schreier, any extension of \mathfrak{N} by \mathfrak{A} may be determined by a factor set $\{C_{a,b}\}$ and a homomorphic mapping $\overline{\sigma}$ of \mathfrak{A} into the residue class group of the automorphism group of \mathfrak{N} by its inner automorphism group. We shall call such extension a $\overline{\sigma}$ -extension. Let σ be a mapping from \mathfrak{A} into the automorphism group of \mathfrak{N} such that the residue class containing σa is equal to $\overline{\sigma} a$). Then any $\overline{\sigma}$ -extension may be determined by a factor set $\{C_{a,b}\}$ which satisfies the following conditions:

1) $A^{\sigma(a)\sigma(b)} = C_{a,b}^{-1} A^{\sigma(ab)} C_{a,b}$ $(A \in \mathfrak{N}; a, b \in \mathfrak{N})$

2) $C_{ab,c}C_{a,b}^{\sigma(c)} = C_{a,bc}C_{b,c}$.

We shall call such factor set a σ -factor set.

Theorem 1. Let $\{C_{a,v}\}$ and $\{D_{a,v}\}$ be two σ -factor sets. Then the set $\{Z_{a,v} = D_{a,v}C_{a,v}^{-1}\}$ is contained in the center B of \mathfrak{N} and satisfies the following conditions:

3) $Z_{ab,c}Z_{a,b}^{o(c)} = Z_{a,bc}Z_{b,c}$.

Conversely, if $\{C_{a,b}\}$ is a σ -factor set, and if $\{Z_{a,b}\}$ is contained in β and satisfies 3), then $\{D_{a,b} = C_{a,b}Z_{a,b}\}$ is a σ -factor set.

Proof. If $\{C_{a,b}\}$ and $\{D_{a,b}\}$ are both σ -factor sets, then from 1) $C_{a,b}^{-1}AC_{a,b} = D_{a,b}^{-1}AD_{a,b}$ for any $A \in \mathfrak{N}$, hence $Z_{a,b} = D_{a,b}C_{a,b}^{-1} \in \mathfrak{Z}$. Further, since

¹⁾ O. Schreier : Über die Erweiterung von Gruppen, Monatshefte für Math. u. Phisik, 34 (1926) 321-346.

²⁾ K. Shoda: Über die Schreiersche Erweiterungstheorie. Proc. Acad. Tokyo (1943) 518-519.

 $\{D_{\alpha,b}\}$ satisfies 2), $C_{\alpha,b}C_{\alpha,b}^{\epsilon(\alpha)}Z_{\alpha,b} = C_{\alpha,b}c_{b,c}Z_{\alpha,b} = Z_{a,b,c}$ and hence $\{Z_{\alpha,b}\}$ satisfies 3). Conversely, if $\{C_{\alpha,b}\}$ is a σ -factor set and if $\{Z_{\alpha,b}\}$ is contained in 3 and satisfies 3), then for $\{D_{\alpha,b} = C_{\alpha,b}Z_{\alpha,b}\}$ the conditions 1) and 2) will be easily verified.

As an immediate consequence of this theorem, we have the

Corollary. For any $\overline{\sigma}$ -extension \mathfrak{G} of \mathfrak{N} by \mathfrak{A} , $\mathfrak{G}/\mathfrak{B}$ is uniquely determined disregarding isomorphisms.

If two $\overline{\sigma}$ -extensions \mathfrak{G} and \mathfrak{G}' are mutually isomorphic by a correspondence such that every element of \mathfrak{N} corresponds to itself and the residue class of \mathfrak{G} mod \mathfrak{N} corresponding to $\mathfrak{aG}\mathfrak{N}$ corresponds to such residue class of \mathfrak{G}' mod \mathfrak{N} , then we shall say that \mathfrak{G} and \mathfrak{G}' have the same *type*. As is easily verified, two extensions determined by σ -factor sets $\{C_{a,b}\}$ and $\{D_{a,b}\}$ have the same type if and only if there exists a set $\{Z_a\}$ of elements from \mathfrak{Z} such that $D_{a,b} = C_{a,b}Z_{a,b}^{-1}Z_{a}^{\sigma(b)}Z_{b}$. In such a case, we say that $\{D_{a,j}\}$ is associated to $\{C_{a,j}\}$. This relation satisfies the three conditions of equivalence, and hence we can classify all σ -factor sets by this relation. The totality of these classes is denoted by $E_{\mathfrak{a}}(\mathfrak{N}, \mathfrak{N})$, then there exists a one to one correspondence between $E_{\mathfrak{a}}(\mathfrak{N}, \mathfrak{N})$ and the totality of types of extensions.

Now we shall suppose that there exists at least one $\overline{\sigma}$ -extension of \Re by \Re , and select a $\overline{\sigma}$ -factor set $\{C_{a,b}\}$. Then for any $\overline{\sigma}$ -factor set $\{D_{a,b}\}$, $\{Z_{a,b}=D_{a,b}C_{a,b}^{-1}\}$ is a $\overline{\sigma}$ -factor set respecting to 3, where the homomorphism of \Re in the automorphism group of \Im induced by σ is also denoted by σ . Further, $\{D_{a,b}\}$ is associated to $\{D'_{a,b}\}$ if and only if $\{Z_{a,b}=D_{a,b}C_{a,b}^{-1}\}$ is associated to $\{Z'_{a,b}=D'_{a,b}C_{a,b}^{-1}\}$. Thus there exists a one to one correspondence between E_{σ} (\Re , \Re) and E_{σ} (\Im , \Re). Accordingly we have;

Theorem 2. Let $\overline{\sigma}$ be a homomorphism of \mathfrak{A} in the residue class group of the automorphism group of \mathfrak{N} by its inner automorphism group, and suppose that there exists at least one $\overline{\sigma}$ -extension of \mathfrak{N} by \mathfrak{A} . Then there exists a one to one correspondence between types of extensions of \mathfrak{N} by \mathfrak{A} and those of 3 by \mathfrak{A} .

As is well known, E_a (3, \mathfrak{A}) forms an abelian group by the definition of products $\{Z_{a,b}\} \times \{Z'_{a,b}\} = \{Z_{a,b} \cdot Z'_{a,b}\}$. This group will be called the group of $\overline{\sigma}$ -extensions of \mathfrak{A} by \mathfrak{A} when there exists at least one $\overline{\sigma}$ -extension.

Corollary. If the center of \Re is unit group, then there exists a unique $\overline{\sigma}$ -extension of \Re by \Re for any $\overline{\sigma}$.

Proof. If there exists at least one $\overline{\sigma}$ -extension then the uniqueness is an immediate consequence of theorem 2. We shall prove the existence. By the

(10) 12

assumption, the inner automorphism group of \mathfrak{N} is isomorphic to \mathfrak{N} . We shall identify this with \mathfrak{N} . Let \mathfrak{C} be the kernel of $\overline{\sigma}$ and let $\mathfrak{S}/\mathfrak{N}$ be the image of \mathfrak{N} by $\overline{\sigma}$. Then $\overline{\sigma}$ induces an isomorphim of $\mathfrak{N}/\mathfrak{C}$ on $\mathfrak{S}/\mathfrak{N}$. Let in this isomorphism a residue class $a \mathfrak{C}$ of $\mathfrak{N}/\mathfrak{C}$ corresponds to a residue class $\sigma(a) \mathfrak{N}$ of $\mathfrak{S}/\mathfrak{N}$. Then the subgroup of $\mathfrak{S} \times \mathfrak{A}$ which consists of all elements with forms $\sigma(a(N \ ac \ (N \in \mathfrak{N}, C \in \mathfrak{C}))$ is a $\overline{\sigma}$ -extension of \mathfrak{N} by \mathfrak{N} .

Corollary. Let \mathfrak{A} and the center \mathfrak{Z} of \mathfrak{N} have the finite orders m and n respectively, and suppose that m and n are coprime. Then there exists at most one $\overline{\sigma}$ -extension of \mathfrak{N} by \mathfrak{A} for any $\overline{\sigma}$.

Proof. In this case, it will be easily verified that E_{σ} (3, \mathfrak{A}) is a unit group, and hence our assertion holds.

Specially, if the orders of \mathfrak{A} and \mathfrak{N} are both finite and coprime, then any σ -extension of \mathfrak{N} by \mathfrak{A} , if exists, must be split.⁴⁾

3. In this section, we shall consider central extensions⁵⁾ of \mathfrak{N} by \mathfrak{A} under the assumptions that \mathfrak{N} and \mathfrak{A} are both abelian and \mathfrak{A} has a finite number of generators.

First of all, we shall state without proof Shoda's theorem.

Theorem. 5) Let \mathfrak{N} and \mathfrak{N} be two groups, and \mathfrak{N} be defined by a set of generators $E = \{a_i\}$ and defining relations $R = \{r(a)\}$. Denote by $\mathfrak{F}(E)$ the free group generated by E, and by \mathfrak{R} the normal subgroup of $\mathfrak{F}(E)$ generated by R and further by $A(\mathfrak{N})$ the automorphism group of \mathfrak{N} . If a homomorphic mapping $a_i \rightarrow \alpha_i$ from $\mathfrak{F}(E)$ into $A(\mathfrak{N})$ and a homomorphic mapping $r(a) \rightarrow A_r$ from \mathfrak{R} into \mathfrak{N} satisfy the following conditions:

1) $Aa_ir(a)a_i^{-1} = A_{r\omega}^{\alpha_i}$

2) $A^{r(\alpha)} = A_r A_r^{-1}$ (where A is any element of \mathfrak{M} and $r(\alpha)$ is the image of $r(\alpha)$.)

then an extension of \mathfrak{N} by \mathfrak{A} may be obtained by introducing the relations:

 $a_i A a_i^{-1} A^{-\alpha i}$, $r(a_i A_i^{-1})$ in the free product of \mathfrak{N} and $\mathfrak{F} E_i$. Conversely every extension may be obtained in such a way.

From this theorem, if \mathfrak{N} is abelian, any central extension of \mathfrak{N} by \mathfrak{A} may be determined by a homomorphic mapping from $\mathfrak{R}/\mathfrak{F} E_{\mathfrak{O}}\mathfrak{R}$ into \mathfrak{N} , where $\mathfrak{F}(E,\mathfrak{O}\mathfrak{R}$ denotes the commutator subgroup of $\mathfrak{F}(E)$ and \mathfrak{R} .

³⁾ See footnote 1).

⁴⁾ See Zassenhaus's "Lehrbuch der Gruppentheorie" p. 125.

⁵⁾ See section 1.

⁶⁾ See footnote 2).

H. NAGAO. [Vol. 25,

Let $\mathfrak{A} = (a_1) \times ... \times (a_n)$ be an abelian group and t_i be the order of a_i , then \mathfrak{A} may be regarded as defined by a set of generators $E = \{a_1, a_2, ..., a_n\}$ and defining relations $r_i = a_i^{t_i}, r_{i,k} = a_i a_k a_i^{-1} a_k^{-1} (i, k = 1, ..., n; i < k)$. Let $\mathfrak{F}(E)$ and \mathfrak{R} have the same significances as above, then we have the following lemma.

Lemma. $\Re/\Im(E)_0\Re$ is isomorphic with $\mathfrak{W} = (W_1) \times \ldots \times (W_n) \times (W_{1,2}) \times (W_{1,3}) \times \ldots \times (W_{n-1,n})$, where (W_i) (i=1, 2, ..., n) is a cyclic group of order O and $(W_{i,k})(i, k=1, 2, ..., n)$ is a cyclic group of order t_k .

Proof. We shall denote by $\overline{\mathfrak{R}}$ the residue class group $\mathfrak{R}/\mathfrak{F}(E)_{\mathfrak{R}}$. \mathfrak{R} is generated by $\overline{r}_{i} = r_{i} \mathfrak{F}(E_{\mathfrak{R}})$ and $r_{i,k} = r_{i,k}(\mathfrak{F}(E)_{\mathfrak{R}})$. The following relations hold in \mathfrak{R} :

$$\begin{aligned} \mathbf{\gamma}_{k}^{a_{i}} &= a_{i}\mathbf{\gamma}_{k}a_{i}^{-1} = (a_{i}a_{k}a_{i}^{-1})^{t}_{k} = (\mathbf{\gamma}_{i,k}a_{k})^{t}_{k} \\ &= \mathbf{\gamma}_{i,}(a_{k}\mathbf{\gamma}_{i,k}a_{k}^{-1})(a_{k}^{2}\mathbf{\gamma}_{i,k}a_{k}^{-2}) \dots (a_{k}^{t})^{t-1}\mathbf{\gamma}_{i,k}a_{k}^{-(t_{k}-1)})a_{k}^{t} = \mathbf{\gamma}_{i,k}^{1+a_{k}} + \dots + a_{k}^{t-1}\mathbf{\gamma}_{k} \end{aligned}$$

Hence, $\overline{r}_k = \overline{r}_{i,k}^{(k)} \overline{r}_k$, that is, $\overline{r}_{i,k}^{(k)} = \overline{e}$ (\overline{e} is the unit element of \Re). Accordingly by the mapping $W_i \to \overline{r}_i$, $W_{i,k} \to \overline{r}_{i,k}$, \mathfrak{W} is homomorphic to \Re .

Conversely, from the theorem in Zassenhaus's "Lehrbuch der Gruppentheorie" p. 96, we can obtain a central extension of \mathfrak{W} by \mathfrak{N} , introducing the relations $a_i W a_i^{-1} W^{-1}$, $a_i a_k a_i^{-1} a_k^{-1} W_{i,k}^{-1}$, $a'_i W_i^{-1}$ into the free product of $\mathfrak{F}(E)$ and \mathfrak{W} . Hence by the mapping $\overline{r}_i \to W_i$, $\overline{r}_{i,k} \to W_{i,k}$, \mathfrak{R} is homomorphic with \mathfrak{W} . Thus the lemma is proved.

Combining Shoda's theorem and this lemma, we have

Theorem 3. Let \mathfrak{A} , \mathfrak{N} and \mathfrak{M} have the same significances as above. If a homomorphic mapping from \mathfrak{M} into \mathfrak{N} is given by the mapping $W_i \to A_i$, $W_{i,k} \to A_{i,k}$, then, introducing the relations $a_i^{l_i}A_i^{-1}$, $a_ia_ka_i^{-1}a_k^{-1}A_{i,k}^{-1}$, $a_iAa_i^{-1}A^{-1}$ in the free product of \mathfrak{N} and $\mathfrak{F}(E)$, we have a central extension of \mathfrak{N} by \mathfrak{N} . Conversely every central extension of \mathfrak{N} by \mathfrak{N} may be obtained in such a way.

By theorem 3, every extension is determined by a set $\{A_i, A_{i,k}\}$ of elements from \mathfrak{N} such that $A_{i,k}^{i_k}=1$ (1 is the unit element of \mathfrak{N}). As is easily verified, $\{A_i, A_{i,k}\}$ and $\{B_i, B_{i,k}\}$ determine extensions of the same type if and only if there exist *n* elements $N_i(i=1, 2, ..., n)$ of \mathfrak{N} and the following conditions are satisfied:

- 1) $B_i = AN_i^{\prime i}$
- 2) $B_{i,k} = A_{i,k}$.

Hence, we have the following theorem.

Theorem 4. The group of central extensions $E_1(\mathfrak{N}, \mathfrak{N})$ is isomorphic with $\mathfrak{N}_1/\mathfrak{N}_1^{t_1} \times \ldots \times \mathfrak{N}_n/\mathfrak{N}_n^{t_n} \times \mathfrak{N}_{1,2} \times \ldots \times \mathfrak{N}_{n-1,n}$, where $\mathfrak{N}_i(i=1, 2, \ldots, n)$ is isomorphic with \mathfrak{N} and $\mathfrak{N}_{i,k}(i, k=1, \ldots, n; i>k)$ is isomorphic with the subgroup of \mathfrak{N} which consists of all elements whose orders devide t_k .

(10) 14