1. Equilibrium Potentials and Energy Integrals.

By Nobuyuki NINOMIYA.

Mathematical Institute, Nagoya University. (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1950.)

1. Introduction

Frostman's theory¹⁾ on equilibrium potentials of order a has been recently extended by Kunugui²⁾ to generalized potentials. The purpose of this paper is to study the same problem from another point of view.

For preparation we state some definitions on generalized potentials and capacities. Denote by \mathcal{Q} the whole Euclidean space, by $\delta(E)$ the diameter of a bounded Borel set E, by r_{PQ} the length of a segment PQ, and by D_E^m the family of non-negative mass distributions of total mass m on a bounded Borel set E; especially when m = 1, we denote it by D_E simply. Let $\varphi(t)$ be a strictly monotone decreasing and continuous function defined in the interval $(0,\infty)$ such that $\lim_{t \to 0} \varphi(t) = +\infty$. Given any mass distribution μ on E, we call the Lebesgue-Stieltjes integrals

$$\int_{E} \varphi(r_{PQ}) d\mu(Q) \text{ and } \iint_{E} \varphi(r_{PQ}) d\mu(Q) d\mu(P)$$

the \mathcal{P} -potentials and the \mathcal{P} -energy integrals respectively with respect to μ . Put

$$V_E^{\Phi} = \inf_{\mu \in D_E} \sup_{F \in \Omega} \int_E \varphi(r_{PQ}) d\mu(Q) \text{ and } W_E^{\Phi} = \inf_{\mu \in D_E} \iint_E \varphi(r_{PQ}) d\mu(Q) d\mu(P),$$

then it is easily seen that

We define the φ -capacity $C^{\diamond}(E)$ of E as follows; if $V_{E}^{\diamond} < +\infty$, then $C^{\diamond}(E) = \varphi^{-1}[V_{E}^{\diamond}]$, and if $V_{E}^{\diamond} = +\infty$, then $C^{\diamond}(E) = 0$, where φ^{-1} denotes the inverse function of φ . Hereafter we shall write for the sake of simplicity V_{E} , W_{E} , C(E) for V_{E}^{\diamond} , W_{E}^{\diamond} , $C_{E}^{\diamond}(E)$.

¹⁾ O. Frostman: Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Thèse. Lund. 1935.

²⁾ K. Kunugui: Sur quelques points de la théorie du potentiel. (I), (II). Proc. Jap. Acad. vol. 21-23.

2. Equilibrium potentials.

Let \mathcal{Q} be the ordinary space and $\mathcal{Q}(t)$ satisfy the following conditions³⁾:

- a) $\varphi(t)$ is strictly monotone decreasing and continuous in $(0, \infty)$ and $\lim \varphi(t) = +\infty$.
- β) $t \varphi(t)$ is convex in (0, ∞). (What is the same, $\varphi(t)$ is convex in $\frac{1}{t}$ in (0, ∞)).

$$\gamma) \quad \int_{0}^{t^{2}} \varphi(t) dt < +\infty \text{ and } \overline{\lim_{r \to 0}} \frac{\int_{0}^{r} t^{2} \varphi(t) dt}{r^{3} \varphi(r)} < +\infty.$$

Then, from β), we see that $\varphi(r_{PQ})$ is subharmonic in $\mathcal{Q}-\{Q\}$ when Q is fixed in \mathcal{Q} . Accordingly, for any non-negative mass distribution μ on a bounded closed set F, the potential with respect to μ is subharmonic in each component of $\mathcal{Q}-F$.

First, let us consider the maximum principle: Let $\varphi(t)$ satisfy the conditions a) and β) and f(P) be continuous and superharmonic in \mathcal{Q} . If the potential u(P) with respect to a non-negative mass distribution μ whose kernel is a bounded closed set F is $\leq f(P)$ in F, then $u(P) \leq f(P)$ in \mathcal{Q} . In case $\varphi(t) = \frac{1}{t^a}$, it has been obtained by Yosida⁴). His proof is very elementary and interesting. The general case may be treated by a slight modification. Let us state the proof briefly. For any $\varepsilon > 0$, take a closed subset F' of F such that u(P) is continuous in F' and $\mu(F-F') < \varepsilon$. Then $\int_{E^{-\varepsilon}(P,\delta_{\varepsilon})} \varphi(r_{PQ}) d\mu(Q) < \varepsilon^{5}$ in F', where $s(P,\delta_{\varepsilon})$ denotes any sphere

with center $P \in F'$ and radius δ_{ε} (a constant). Therefore,

 $\int_{F'\cdot s(P,\delta_{\mathcal{C}})} \Phi(r_{PQ}) d\mu(Q) < \varepsilon \text{ in } F'. \text{ Accordingly, } \int_{F'} \Phi(r_{PQ}) d\mu(Q) \text{ is continuous in } F'^{5}; \text{ after all it become continuous in } \mathcal{Q}^{5}.$

$$\begin{array}{ll} \beta') \quad \varPhi(t) \text{ is convex in } \log \frac{1}{t} & \text{in } (0, \ \infty). \\ \\ r') \quad \int_0 t \varPhi(t) dt < +\infty \quad \text{and} \quad \lim_{r \to 0} - \frac{\int_0^r t \varPhi(t) dt}{r^2 \varPhi(r)} < +\infty. \end{array}$$

4) Y. Yosida: Sur le principle du Maximum dan la théorie du potentiel. Proc. Imp. Acad. Vol. 17. pp. 476-478.

5) O. Frostman: loc. cit. p. 26.

2

³⁾ If \mathcal{Q} is the plane, the conditions β) and r) for $\mathcal{O}(t)$ must be replaced by the following:

3

Let P^* be a point where $\int_{F'} \varphi(r_{PQ}) d\mu(Q) - f(P)$ attains its maximum. Then $P^* \in F'$. Using this fact, for any point $P \in Q - F$, we easily see that

$$u(P)-f(P) \leq (\varphi(l)-\varphi[\delta(F)]\cdot\mu(F-F'),$$

where l is the distance between P and F. Thus we obtain $u(P) \leq f(P)$ in Q-F.

Using the maximum principle, we obtain at once the following two theorems.

Theorem A: Let $\varphi(t)$ satisfy the conditions a) and β and F be a bounded closed set of positive φ -capacity. Then there exists $\mu_0 \in D_F$ such that the φ -potential $u_0(P)$ with respect to μ_0 is constant and equal to its maximum in F except a possible set of φ -capacity 0.

Theorem B: Let $\mathcal{P}(t)$ and F be the same as above and f(P) be continuous and superharmonic in \mathcal{Q} . Then there exists $\mu_0 \in D_F$ such that the \mathcal{P} -potential $u_0(P)$ with respect to μ_0 is $f(P) + \gamma$ in F except a possible set of \mathcal{P} -capacity 0 and always $\leq f(P) + \gamma$ in \mathcal{Q} , where γ is a suitable constant.

Remark: The mass distribution μ_0 in Theorem A is what minimizes⁶ energy integrals

$$I(\mu) = \iint_{P} \varphi(r_{PQ}) d\mu(Q) d\mu(P)$$

with $\mu \in D_F$; while, the distribution μ_0 in Theorem B is what minimizes Gauss variations⁷⁾

$$G(\mu) = \iint_{F} \varphi(r_{PQ}) d\mu(Q) d\mu(P) - 2 \int_{F'} f(P) d\mu(P)$$

with $\mu \in D_F$.

No. 1.]

Remark: The following fact is very important: W_E coincides with V_E for any bounded Borel set E. It is easily proved from Theorem A and the properties⁸⁾ of W and V.

3. Poincaré's condition.

Given a bounded Borel set E and its limiting point P_0 , we say that P_0 satisfies Poincaré's condition with respect to E, if there exists a cone such that its vertix is P_0 and its interior is contained

⁶⁾ O. Frostman: loc. cit. p. 56.

⁷⁾ S. Kametani: Positive definite integral quadratic forms and generalized potentials. Proc. Imp. Acad. vol. 20, p. 11.

⁸⁾ O. Frostman loc. cit. pp. 49-52.

in E. Now, we shall replace Poincaré's condition by another potential-theoretic condition.

We obtain:

Theorem : Let $\mathcal{Q}(t)$ satisfy the conditions a) and γ), and let Eany bounded Borel set, and P_0 its limiting point. If $\overline{\lim_{s \to P_0}} \frac{m(Es)}{m(s)} > 0$, then $\overline{\lim_{s \to P_0}} \frac{V_s}{V_{Es}} > 0$, where s denotes a sequence of closed spheres with center P_0 .

Proof: There exist δ_0 and m such that $\mathcal{O}(t) > 0$ and $\frac{\int_0^r t^2 \mathcal{O}(t) dt}{r^3 \mathcal{O}(r)} < m$ in $(0, \delta_0)$. For any sphere s with center P_0 , it is easily seen that $\int_s \mathcal{O}(r_{PQ}) d\tau_Q$ is continuous in \mathcal{Q} and attains its maximum at P_0 , where $d\tau_Q$ denotes a volume element at Q. Take a small sphere s with center P_0 and radius $r < \frac{1}{6} \delta_d$. Then

$$V_{s} \ge W_{s} = \inf_{\mu \in D_{s}} \iint_{s} \mathcal{O}(r_{PQ}) d\mu(Q) d\mu(P) \ge \mathcal{O}(2r)$$
$$= 4\pi \cdot \mathcal{O}(2r) \cdot (2r)^{3} \cdot \frac{1}{24} \cdot \frac{1}{m(s)}$$

and

$$V_{E_s} = \inf_{\mu \in \mathcal{D}_{E_s}} \sup_{P \in \Omega} \int_{E_s} \varphi(r_{PQ}) d\mu(Q) \leq \frac{1}{m(E_s)} \sup_{P \in \Omega} \int_{E_s} \varphi(r_{PQ}) d\tau_Q$$

Let P^* be a point where $\int_{E_s} \varphi(r_{PQ}) d\tau_Q$, being continuous in Q, attains its maximum. Then we easily see that $r_{P_0P*} \leq 3r$. Hence

$$\begin{split} \int_{E_s} & \varphi(r_{P*Q}) \, d\tau_Q \leq \int_s \varphi(r_{P*Q}) \, d\tau_Q \leq \int_s \varphi(r_{P_0Q}) \, d\tau_Q \\ &= 4\pi \int_0^r t^2 \varphi(t) \, dt < 4\pi \int_0^{2^r} t^2 \varphi(t) \, dt \end{split}$$

Therefore

$$V_{Es} < rac{4\pi}{m(Es)} \int_0^{2r} t^2 arPhi(t) dt.$$

Accordingly

$$\frac{V_s}{V_{E_s}} > \frac{1}{24} \cdot \frac{(2r)^3 \cdot \varphi(2r)}{\int_0^{2r} t^2 \varphi(t) dt} \cdot \frac{m(Es)}{m(s)} > \frac{1}{24m} \cdot \frac{m(Es)}{m(s)}$$

Equilibrium Potentials and Energy Integrals.

Thus we obtain

$$\overline{\lim_{s \to P_0}} \frac{V_s}{V_{Es}} \geq \frac{1}{24m} \overline{\lim_{s \to P_0}} \frac{m(Es)}{m(s)} > 0.$$

Hereafter we shall say that P_0 satisfies generalized φ -Poincaré's condition with respect to E if $\lim_{s \to P_0} \frac{V_s}{V_{Es}} > 0$.

Theorem: Let $\mathcal{P}(t)$ be the same as above, u(P) a potential with respect to a non-negative mass distribution μ on a bounded closed set F, E any bounded Borel set, and P_0 its limiting point. If P_0 satisfies generalized φ -Poincaré's condition with respect to E, then holds

$$u(P_0) = \lim_{E \ni P \to P_0} u(P).$$

Proof: For any $\lambda \leq 1$ and $r \leq \delta_0$, we obtain $\varphi(\lambda r) \leq \frac{3m}{\lambda^3} \varphi(r)$,

since

$$m \cdot r^{3} \varphi(r) > \int_{0}^{r} t^{2} \varphi(t) dt \geq \int_{0}^{\lambda r} t^{2} \overline{\varphi}(t) dt > \varphi(\lambda r) \cdot \int_{0}^{\lambda r} t^{2} dt = \frac{\lambda^{3} r^{3}}{3} \varphi(\lambda r).$$

Therefore, for any $\varepsilon < Min(\Phi^{-1}(m), 1)$, we get

We have only to prove our theorem in the case when $P_0 \in F_0$ and $u(P_0) < +\infty$, where F_0 denotes the kernel of μ . We can take a sphere S_0 with center P_0 and radius $R_0 < \delta_0$ such that

$$\int_{s_0} \varphi(r_{P_0 2}) d\mu(Q) \langle \varepsilon^6.$$

Put $u_1(P) = \int_{s_0} \varphi(r_{PQ}) d\mu(Q)$ and $u_2(P) = \int_{F-S_0} \varphi(r_{PQ}) d\mu(Q).$

Take a concentric sphere $s_0 < S_0$ such that $u_2(P) < u_2(P_0) + \varepsilon$ in s_0 . Let $\lim_{s \to P_0} \frac{V_s}{V_{E_s}} > K > 0$. Then there exists a sequence of concentric

spheres
$$\{s_n\}$$
 such that $s_0 > s_1 > s_2 \cdots \rightarrow P_0$ and $\frac{V_{s_n}}{V_{Es_n}} > K > 0$.

Take any s_n with radius $r_n < \varepsilon R_0$ and its concentric sphere S_n with radius $R_n \left(=\frac{r_n}{\varepsilon}\right)$, then $s_n \in S_n \in S_0$ and $\frac{\vartheta(r_n)}{\vartheta(R_n)} < \frac{3}{\varepsilon^3} \vartheta(\varepsilon)$.

As $C(Es_n) > 0$, there exists $\mu_n \in D_{Es_n}$ such that

No. 1.]

$$\begin{split} \int_{E_{s_n}} & u(P) \ d\mu_n(P) = \int_{E_{s_n}} & u_1(P) d\mu_n(P) + \int_{E_{s_n}} & u_2(P) d\mu_n(P) \\ \int_{E_{s_n}} & u_2(P) d\mu_n(P) < u_2(P_0) + \varepsilon < u(P_0) + \varepsilon \\ \int_{E_{s_n}} & u_1(P) d\mu_n(P) = \int_{s_0} & d\mu(Q) \int_{E_{s_n}} & \varphi(r_Q) d\mu_n(P) \\ &= \int_{s_0 - S_n} & d\mu(Q) \int_{E_{s_n}} & \varphi(r_{PQ}) d\mu_n(P) + \int_{s_n} & d\mu(Q) \int_{E_{s_n}} & \varphi(r_{PQ}) d\mu_n(P). \end{split}$$

We shall now evaluate the last two terms of the above expression. The second term is

$$\begin{split} &< 2V_{E_{s_n}} \cdot \mu(S_n) < \frac{2}{K} V_{s_n} \cdot \mu(S_n) \\ &< \frac{2}{K} \cdot \frac{\varepsilon^6}{\vartheta(R_n)} \cdot \sup_{P \in \Omega} \frac{1}{\frac{4}{3} \pi r_n^3} \int_{S_n} \vartheta(r_{PQ}) d\tau_Q \\ &= \frac{6}{K} \cdot \frac{\varepsilon^6}{\vartheta(R_n)} \cdot \frac{1}{\frac{4}{3} \pi r_n^3} \int_{S_n} \vartheta(r_{P_0Q}) d\tau_Q \\ &= \frac{1}{K} \cdot \frac{\varepsilon^6}{\vartheta(R_n)} \cdot \frac{\int_0^{r_n} t^2 \vartheta(t) dt}{r_n^3} < \frac{6}{K} \cdot \frac{\varepsilon^6}{\vartheta(R_n)} \cdot m \vartheta(r_n) \\ &< \frac{6m}{K} \varepsilon^6 \cdot \frac{3}{\varepsilon^3} \vartheta(\varepsilon) = \frac{18m}{K} \varepsilon^3 \vartheta(\varepsilon). \end{split}$$

Next, for any $P \in s_n$ and any $Q \in S_0 - S_n$,

$$\begin{aligned} \frac{r_{P_0Q}}{r_{PQ}} &= 1 + \frac{r_{P_0Q} - r_{PQ}}{r_{PQ}} \leq 1 + \frac{r_{P_0P}}{r_{P_0Q} - r_{P_0P}} \leq 1 + \frac{r_n}{R_n - r_n} \\ &= \frac{R_n}{R_n - r_n} = \frac{1}{1 - \varepsilon}. \end{aligned}$$

Hence,

$$r_{PQ} \geq (1-\varepsilon)r_{P_0?}, \quad \varphi(r_{PQ}) \leq \varphi[(1-\varepsilon)r_{P_0Q}] \leq \frac{3m}{(1-\varepsilon)^3} \varphi(r_{PQ}),$$

and

$$\int_{Es_n} \varphi(r_{PQ}) d\mu_n(P) \leq \frac{3m}{(1-\varepsilon)^3} \, \varphi(r_{P_0Q}).$$

Therefore, the first term of the above expression is

$$\leq \frac{3m}{(1-\varepsilon)^3} \int_{s_0-s_n} \varphi(r_{P_0Q}) d\mu(Q) < \frac{3m}{(1-\varepsilon)^3} \int_{s_0} \varphi(r_{P_0Q}) d\mu(Q) < \frac{3m}{(1-\varepsilon)^3} \cdot \varepsilon^6.$$

Thus

$$\int_{E_{\delta_n}} u(P) d\mu_n(P) \langle u(P_0) + A(\varepsilon),$$

where

$$A(\varepsilon) = \varepsilon + \frac{3m}{(1-\varepsilon)^3} \varepsilon^6 + \frac{18m}{K} \varepsilon^3 \varphi(\varepsilon)$$

Therefore, there exists a sequence of points $\{P_n\}$ such that $E \ni P_n \to P_0$ and $u(P_n) < u(P_0) + A(\varepsilon)$. Accordingly,

$$\lim_{\overline{E},\overline{P},\overline{P},\overline{P}_{0}} u(P) \leq u(P_{0}) + A(\varepsilon).$$

Making $\varepsilon \to 0$, we obtain $\lim_{E \ni P \to P_0} u(P) \leq u(P_0)$.

We have $\lim_{\overline{x_0P}\to P_0} u(P) = u(P_0)$ from the lower semi-continuity of u(P).

Theorem : Let $\varphi(t)$ satisfy the conditions a), β), and γ). Then the equilibrium potential $u_0(P)$ in a bounded closed set F of positive φ -capacity attains its maximum V_F at any point, of F, which satisfies generalized φ -Poincaré's condition with respect to F.

Proof: Put

$$F' = \{P; P \in F, u_0(P) = V_F\}.$$

Then

$$C(F-F')=0.$$

If $\overline{\lim_{s \to P^*}} \frac{V_s}{V_{F's}} > 0$, then P^* is a limiting point of F' and $\overline{\lim_{s \to P^*}} \frac{V_s}{V_{F''s}} > 0$. Accordingly, $u_0(P^*) = \lim_{F' \ni \overline{P} \to P^*} u(P) = V_F$.

Remark: Frostman has defined⁹ the capacity density of E at P_0 by $\lim_{s \to P_0} \frac{C^{\alpha}(Es)}{C^{\alpha}(s)}$ in his theory of potentials of order α . For a sufficiently small sphere s,

$$V_{Es} = \varphi \left[C(Es) \right] = \varphi \left[\frac{C(Es)}{C(s)} \cdot C(s) \right] \leq \frac{3m}{\left[\frac{C(Es)}{C(s)} \right]^3} \varphi \left[C(s) \right] = \frac{3m}{\left[\frac{C(Es)}{C(s)} \right]^3} \cdot V_s.$$

Hence we obtain

$$\overline{\lim_{s \to F_0}} \frac{V_s}{V_{Es}} \geq \frac{1}{3m} \left[\overline{\lim_{s \to F_0}} \frac{C(Es)}{C(s)} \right]^3.$$

9) O. Frostman: loc. cit. p. 57.

Thus our generalized φ -Poincaré's condition contains the density of φ -capacity by Frostman's definition.

4. Energy integrals.

$$I(\sigma) = \iint_{P} \varphi\left(\frac{1}{r_{PQ}}\right) d\sigma(Q) d\sigma(P)$$

with respect to σ , if it exists, is always ≥ 0 ; especially the equality holds if and only if $\sigma \equiv 0$. In his proof he has used Fourier transformation of $\mathscr{O}\left(\frac{1}{r_{PQ}}\right)$. Here, we will give another proof by using Theorem A and B. We suppose that $\mathscr{O}(t)$ satisfies the conditions *a*) and β . For our proof we shall use the following six lemmas.

Lemma 1: Let F_1 and F_2 be two disjoint bounded closed sets of positive φ -capacity, μ and ν be two non-negative mass distributions of total mass unity whose kernels are F_1 and F_2 respectively. Then it is impossible that

$$\gamma_{1} = V_{F_{1}} - \int_{F_{2}} d\nu(P) \int_{F_{1}} \varphi(r_{PQ}) d\mu_{0}(Q)$$

$$\gamma_{2} = V_{F_{2}} - \int_{F_{1}} d\mu(P) \int_{F_{2}} \varphi(r_{PQ}) d\nu_{0}(Q)$$

and

vanish simultaneously, where μ_0 and ν_0 denote equilibrium distributions on F_1 and F_2 respectively.

Proof: Evidently $\gamma_1 \geq 0$ and $\gamma_2 \geq 0$. We easily see that the equilibrium potential $u_0(P)$ on a bounded closed set F' of positive \mathscr{P} -capacity is $\langle V_F$ in \mathscr{Q}_F^{\sim} , where \mathscr{Q}_F° denotes the component of \mathscr{Q} -F which contains the infinity. Either $F_1 \cdot \mathscr{Q}_{F_2}^{\sim}$ or $F_2 \cdot \mathscr{Q}_{F_1}^{\sim}$ is not empty. Suppose that $F_1 \cdot \mathscr{Q}_{F_2}^{\sim}$ is not empty and P_0 is its arbitrary point. Then $V_{F_2} > \int_{F_2} \mathscr{Q}(r_{F_0}) d\nu_0(Q)$. Consequently, $V_{F_2} > \int_{F_2} \mathscr{Q}(r_{F_0}) d\nu_0(Q)$ in some neighbourhood $U(P_0)$ of P_0 .

¹⁰⁾ K. Kunugui: loc. cit. (II).

Being

$$\mu[U(P_0)] > 0, \quad V_{F_2} \cdot \mu[U(P_0)] > \int_{U(P_0)} d\mu(p) \int_{F_2} d(r_{PQ}) d\nu_0(Q).$$

But certainly

$$V_{F_{2}} \cdot [\mu(F_{1}) - \mu [U(P_{0})]] \ge \int_{F_{1} - U(P_{0})} d\mu (P) \int_{F_{2}} \varphi(r_{PQ}) d\nu_{0}(Q).$$

Thus,

$$V_{F_{2}} > \int_{F_{1}} d\mu(P) \int_{F_{2}} \Phi(r_{PQ}) d\nu_{0}(Q)$$

Lemma 2: Let E be any bounded Borel sets and $\mu, \nu \in D_E$ such that

$$\iint_E \varphi(r_{PQ}) d\mu(Q) d\mu(P) < +\infty$$

and

$$\begin{split} \iint_{E} & \varPhi(r_{PQ}) d\nu(Q) d\nu(P) < + \infty \,. \\ & \int_{E} & \varPhi(r_{PQ}) d\mu(Q) - \int_{E} & \varPhi(r_{PQ}) d\nu(Q) \end{split}$$

 $\cong \delta^{(1)}$ (a constant) in E, then $\mu \equiv \nu$.

. .

Proof: Let $\sigma = \mu - \nu$ and suppose $\sigma \equiv 0$. Let $\sigma = \mu' - \nu'$ be Hahn's decomposition of σ . Then there exists a closed sphere s^{12} such that $\sigma(s) = a > 0$, and we can take its concentric closed sphere S such that S > s and $\nu'(S-s) < \varepsilon < a$. Let $f_1(P) = \int_{s^0} \frac{1}{r_{PM}} d\sigma_M$, s^0 denoting a surface of s and $d\sigma_M$ a surface element at $M \in s^0$. Then, $f_1(P) \equiv A$ in s and $\equiv B$ on S^0 , where both A and B are constants and A > B > 0. $f_1(P)$ is continuous and superharmonic in \mathcal{Q} . Let $f_2(P) \equiv B$ in S and $\equiv f_1(P)$ in $\mathcal{Q} - S$. Then $f_2(P)$ is also continuous and superharmonic in \mathcal{Q} . We see C(E) > 0 from

$${\displaystyle \int\!\!\int_{\scriptscriptstyle E}} arphi(r_{\scriptscriptstyle PQ}) d\mu(Q) d\mu(P) {\displaystyle <} \infty$$

and

$$\iint_{E} \varphi(r_{PQ}) d\nu(Q) d\nu(P) < +\infty.$$

By Theorem B, there exist $\mu_1, \mu_2 \in D_{\bar{E}}$ such that

¹¹⁾ \simeq means the coincidence except a possible set of φ -capacity 0.

¹²⁾ O. Frostman: loc. cit. p. 32.

$$\int_{\overline{E}} \varphi(r_{PQ}) d\mu_1(Q) \cong f_1(P) + \gamma_1$$

and

$$\int_{\mathbb{Z}} \Phi(r_{PQ}) d\mu_2(Q) \cong f_2(P) + \gamma_2$$

in \overline{E} , where γ_1 and γ_2 are suitable constants. Put

$$f(P) = \int_{\overline{E}} \varphi(r_{PQ}) d\mu_1(Q) - \int_{\overline{E}} \varphi(r_{PQ}) d\mu_2(Q).$$

Then $f(P) \cong f_1(P) - f_2(P) + \gamma$ in \overline{E} , where $\gamma = \gamma_1 - \gamma_2$. Clearly, $f(P) \cong A - B + \gamma$ in $\overline{E} \cdot s$, $\gamma \leq f(P) \leq A - B + \gamma$ in $\overline{E} \cdot (S - s)$ except a possible set of φ -capacity 0, and $\cong \gamma$ in $\overline{E} - S$. Next consider

$$\int_{\overline{E}} f(P) d\sigma(P) = \int_{\overline{E}} f(P) d\sigma(P) = \int_{\overline{E} \cdot s} + \int_{\overline{E} \cdot (s-s)} + \int_{\overline{E} - s} f(P) d\sigma(P).$$

Of course σ cannot have any mass on a set of φ -capacity 0, since

$$\iint_{E} \varphi(P_{PQ}) d\mu(Q) d\mu(P) < +\infty$$

and

$$\begin{split} \iint_{E} \Phi(r_{PQ}) d\nu(Q) d\nu(P) &< + \infty . \\ \int_{\overline{E} \cdot s} f(P) d\sigma(P) = (A - B + \gamma) \cdot \sigma(s), \ \int_{\overline{E} - S} f(P) d\sigma(P) = \gamma \cdot \sigma(\overline{E} - S), \\ \int_{\overline{E} \cdot (S - s)} f(P) d\sigma(P) &= \int_{\overline{E} \cdot (S - s)} f(P) d\mu'(P) - \int_{\overline{E} \cdot (S - s)} f(P) d\nu'(P) \\ &\geq \gamma \cdot \mu'(S - s) - (A - B + \gamma) \cdot \nu'(S - s) > - (A - B) \cdot \varepsilon + \gamma \cdot \sigma(S - s) \end{split}$$

Therefore,

$$\int_{E} f(P) d\sigma(P) > (A - B)(a - \varepsilon) + \gamma \cdot \sigma(E) > \gamma \cdot \sigma(E) = 0.$$

We have however, denoting $\kappa = \mu_1 - \mu_2$,

$$\begin{split} \int_{E} f(P) \, d\sigma(P) &= \int_{E} d\sigma(P) \int_{\overline{E}} \mathcal{O}(r_{PQ}) d\kappa(Q) \\ &= \int_{\overline{E}} d\kappa(Q) \int_{E} \mathcal{O}(r_{PQ}) d\sigma(P) = 0, \end{split}$$

which is a contradiction.

Corollary: The equilibrium distribution on a bounded closed set of positive Φ -capacity is unique.

Hereafter, we suppose $\varphi(t) \geq 0$ in $(0, \infty)$. When E_1 and E_2 are disjoint bounded Borel sets of positive φ -capacity, for $\mu \in D_{E_1}$ and $\nu \in D_{E_2}$ we put

$$G\left[\mu \in D_{E_{1}}, \nu \in D_{E_{2}}\right] = \frac{\iint_{E_{1}} \varphi(r_{PQ}) d\mu(Q) d\mu(P) \times \iint_{E_{2}} \varphi(r_{PQ}) d\nu(Q) d\nu(P)}{\left[\int_{E_{1}} d\mu(P) \int_{E_{2}} \varphi(r_{PQ}) d\nu(Q)\right]^{2}}.$$

So far as there is no confusion, we shall write $G(\mu, \nu)$ for

 $G \left[\mu \in D_{E_1}, \nu \in D_{E_2} \right].$

Lemma 3: Let E_1 and E_2 be two sets stated above. If a pair $(\mu^*, \nu^*), \ \mu^* \in D_{E_1}$ and $\nu^* \in D_{E_2}$, minimizes $G(\mu, \nu)$, then (μ^*, ν^*) has the following properties;

- i) $C\{P; P \in E_1, g_1(P) < 0\} = 0 \text{ and } \mu^*\{P; P \in E_1, g_1(P) > 0\} = 0,$
- ii) $C\{P; P \in E_2, g_2(P) < 0\} = 0 \text{ and } \nu^*\{P; P \in E_2, g_2(P) > 0\} = 0,$

where

No. 1.]

$$\begin{aligned} x &= \iint_{E_1} \varphi(r_{PQ}) \, d\mu^*(Q) d\mu^*(Q), \\ y &= \iint_{E_2} \varphi(r_{PQ}) d\nu^*(Q) d\nu^*(P), \\ z &= \int_{E_1} d\mu^*(P) \int_{E_2} \varphi(r_{PQ}) d\nu^*(Q), \\ g_1(P) &= z^2 \int_{E_1} \varphi(r_{PQ}) d\mu^*(Q) - zx \int_{E_2} \varphi(r_{PQ}) d\nu^*(Q) \end{aligned}$$

and

$$g_2(P) = z^2 \int_{E_2} \varphi(r_{PQ}) d\nu^*(Q) - zy \int_{E_1} \varphi(r_{PQ}) d\mu^*(Q)$$

under the assumption $0 < x, y, z < +\infty$.

Proof: For any $\delta > 0$, put

 $A = \{P; P \in E_1, g_1(P) > -\delta\}$ and $B = \{P; P \in E_1, g_1(P) < -2\delta\}.$

Then $A \cdot B = 0$ and $\mu^*(A) > 0$ from $\int_{E_1} g_1(P) d\mu^*(P) = 0$. Suppose C(B) > 0. Then we can distribute a new mass τ on E_1 such that $\tau = -\mu^*$ on A, $\tau \ge 0$ on B and $\tau(B) = \mu^*(A) = a > 0$, $\tau \equiv 0$ on $E_1 - (A+B)$ and $\sup_{P \in \Omega} \int_B \varphi(r_{PQ}) d\tau(Q) < +\infty$. As $\mu^* + \varepsilon \tau \in D_{E_1}$ for any positive number $\varepsilon < 1$, $G(\mu^* + \varepsilon \tau, \nu^*) \ge G(\mu^*, \nu^*)$. Hence,

$$\begin{split} 0 \leq & 2\varepsilon \int_{\mathbb{R}_{1}} g_{1}(P) d\tau(P) + \varepsilon^{\flat} \bigg[z^{2} \iint_{\mathbb{R}_{1}} \varphi(r_{PQ}) d\tau(Q) d\tau(P) \\ & - x \left(\int_{\mathbb{R}_{1}} d\tau(P) \int_{\mathbb{R}_{2}} \varphi(r_{PQ}) d\nu^{*}(Q) \right)^{2} \bigg] \\ \leq & -2\delta a\varepsilon + \varepsilon^{2} [\quad ,, \quad]. \end{split}$$

We can easily see that the coefficient of ε^2 is finite, and so the last side becomes <0 for some positive number $\varepsilon <1$, which is a conad iction. Therefore, C(B) = 0. Making $\delta \rightarrow 0$, we obtain

 $C\{P; P \in E_1, g_1(P) < 0\} = 0.$

 $\mu^*\{P; P \in E_1, g_1(P) < 0\} = 0,$ Accordingly,

since

- $\iint_{E_1} \mathcal{Q}(r_{PQ}) d\mu^*(Q) d\mu^*(P) < +\infty.$
- $\mu^{*}\{P; P \in E_{1}, g_{1}(P) > 0\} = 0.$ Thus,

Similarly, we obtain

and

$$C\{P; P \in E_2, g_2(P) < 0\} = 0$$

$$\nu^*\{P; P \in E_2, g_2(P) > 0\} = 0.$$

Lemma 4: Let F_1 and F_2 be two disjoint closed sets of positive φ -capacity, then $G(\mu, \nu) > 1$ for any $\mu \in D_{F_1}$ and $\nu \in D_{F_2}$.

Proof: Let $G^* = \inf_{\mu \in DF_1} G(\mu, \nu)$. Then there exist $\{\mu_i\} \in D_{F_1}$ and $\{\nu_i\} \in D_{F_{\eta}}$ such that $G(\mu_i, \nu_i) \downarrow G^*$. We may suppose that both $\{\mu_i\}$ and $\{\nu_i\}$ are convergent. Let $\mu^* \in D_{F_1}$ and $\nu^* \in D_{F_2}$ be respectively their limiting mass distributions. Then $G^* \leq G(\mu^*, \nu^*)$. On the other hand,

$$\iint_{F_1} \varphi(r_{PQ}) d\mu^*(Q) d\mu^*(P) \leq \lim_{i \to \infty} \iint_{F_1} \varphi(r_{PQ}) d\mu_i(Q) d\mu_i(P)$$

$$\iint_{F_2} \varphi(r_{PQ}) d\nu^*(Q) d\nu^*(P) \leq \lim_{i \to \infty} \iint_{F_2} \varphi(r_{PQ}) d\nu_i(Q) d\nu_i(P)$$

and

$$\int_{F_1} d\mu^*(P) \int_{F_2} \varphi(r_{PQ}) \, d\nu^*(Q) = \lim_{i \to \infty} \int_{F_1} d\mu_i(P) \int_{F_2} \varphi(r_{PQ}) d\nu_i(Q),$$

because $\varphi(r_{PQ})$ is bounded and continuous for $P \in F_1$ and $Q \in F_2$. $G(\mu^*,\nu^*) \leq \lim_{i \to \infty} G(\mu_i,\nu_i) = G^*.$ Hence,

Therefore, $G^* = G(\mu^*, \nu^*)$. For μ^* and ν^* , let $x, y, z, g_1(P)$ and

No. 1.] Equilibrium Potentials and Energy Integrals.

Energy Integrais.

 $g_2(P)$ be as was stated in the previous lemma. Then evidently $0 \le x, y, z \le +\infty$. Let

$$F'_1 = \{P; P \in F_1, g_1(P) \leq 0\}$$

and F_1^* be the kernel of μ^* . We show that $F_1^* < F'_1$. Suppose that there exists $P_0 \in F_1^*$ such that $g_1(P_0) > 0$. Then $g_1(P) > 0$ in some neighbourhood $U(P_0)$ of P_0 by the lower semi-continuity of $g_1(P)$ at P_0 . As $\mu^*[U(P_0)] > 0$, we obtain

$$\mu^{*}\{P; P \in F_{1}, g_{1}(P) > 0\} > 0.$$

which is a contradiction. Now, let μ_0^* be the equilibrium distribution on F_1^* (of positive φ -capacity). Then

$$0 \ge \int_{F_1^*} g_1(P) d\mu_0^*(P) = z^2 V_{F_1^*} - zx \int_{F_2^*} d\nu^*(Q) \int_{F_1^*} \varphi(P) d\mu_0^*(P) d\mu_0^*(P)$$

Hence we see $z^2 \leq zx$. Similarly, let ν_0^* be the equilibrium distribution on the kernel F_2^* of ν^* , then

$$0 \ge \int_{F_{9}^{*}} g_{2}(P) d\nu_{0}^{*}(P) = z^{2} V_{F_{2}^{*}} - zy \int_{F_{1}^{*}} d\mu^{*}(Q) \int_{F_{9}^{*}} \varphi(r_{PQ}) d\nu_{0}^{*}(P).$$

Hence we see $z^2 \leq zy$. It is impossible by Lemma 1 that $z^2 = zx$ and $z^2 = zy$ hold simultaneously. Thus, we obtain $G^* = \frac{xy}{z^2} > 1$.

Lemma 5: Let E_1 and E_2 be two disjoint bounded Borel sets of positive Φ -capacity. Then $G(\mu, \nu) \ge 1$ for $\mu \in D_{E_1}$ and $\nu \in D_{E_2}$.

Proof: Let $\{F_n^{(1)}\}$ and $\{F_n^{(2)}\}$ be sequences of closed subsets of E_1 and E_2 respectively such that

$$F_1^{(1)} \in F_2^{(1)} \in F_3^{(1)} \in \cdots \in E_1,$$

$$F_1^{(2)} \in F_2^{(2)} \in F_3^{(2)} \in \cdots \in E_2,$$

 $\mu(F_n^{(1)}) \uparrow \mu(E_1)$ and $\nu(F_n^{(2)}) \uparrow \nu(E_2)$; then we can easily see that $C(F_n^{(1)}) > 0$ and $C(F_n^{(2)}) > 0$ for sufficiently large *n*. By Lemma 4,

$$G_{n}(\mu,\nu) = \frac{\left(\frac{1}{\mu(F_{n}^{(1)})}\right)^{2} \iint_{F_{n}^{(1)}} \varphi(r_{PQ}) d\mu(Q) d\mu(P) \times \left(\frac{1}{\nu(F_{n}^{(2)})}\right)^{2} \iint_{F_{n}^{(2)}} \varphi(r_{PQ}) d\nu(Q) d\nu(P)}{\left[\frac{1}{\mu(F_{n}^{(1)})} \frac{1}{\nu(F_{n}^{(2)})} \int_{F_{n}^{(1)}} d\mu(P) \int_{F_{n}^{(2)}} \varphi(r_{PQ}) d\nu(Q)\right]^{2}} > 1.$$

Making $n \rightarrow \infty$, we obtain $G(\mu, \nu) \ge 1$.

Lemma 6: Under the same condition as in Lemma 5, $G(\mu, \nu) > 1$ for $\mu \in D_{E_1}$ and $\nu \in D_{E_2}$.

Proof: Suppose that $G(\mu^*, \nu^*) = 1$ for $\mu^* \in D_{E_1}$ and $\nu^* \in D_{E_2}$. Then (μ^*, ν^*) minimizes $G[\mu \in D_{E_1}, \nu \in D_{E_2}]$. For μ^* and ν^* , let $x, y, z, g_1(P)$ and $g_2(P)$ be same as in Lemma 3, and

 $E_1' = \{P; P \in E_1, g_1(P) \leq 0\}$ and $E_1'' = \{P; P \in E_1, g_1(P) > 0\};$ then evidently $z^2 = xy$ and $\sqrt{y}g_1(P) + \sqrt{x}g_2(P) = 0$. As

$$\mu^* \in D_{E_{1'}}, \nu^* \in D_{E_2} \in D_{E_{2}+E_{1''}}$$

by Lemma 3 and

$$G(\mu^*, \nu^*) = 1, \ (\mu^*, \nu^*)$$

also minimizes

$$G\left[\mu\in D_{E_{1'}}, \nu\in D_{E_{2}+E_{1''}}\right]$$

by Lemma 5. Hence, by Lemma 3

$$C\{P; P \in E_2 + E_1'', g_2(P) < 0\} = 0,$$

and so

$$C\{P; P \in E_1'', g_2(P) < 0\} = 0.$$

Namely,

$$C\left\{P; P \in E_1'', \sqrt{\frac{y}{x}} g_1(P) > 0\right\} = 0.$$

Thus, $C(E_1'') = 0$.

Accordingly,

 $C\{P; P \in E_1, g_1(P) \neq 0\} = 0.$

Similarly, we see

 $C\{P; P \in E_2, g_2(P) \neq 0\} = 0$

and so

$$C\left\{P; P \in E_2, \sqrt{\frac{y}{x}} g_1(P) \neq 0\right\} = 0.$$

btain $g_1(P) \cong 0$ in $E_1 + E_2$. Next we shall s

Thus we obtain $g_1(P) \cong 0$ in $E_1 + E_2$. Next we shall show that $g_1(P) \cong 0$ in $\overline{E_1 + E_2}$. Let M be any bounded Borel set contained in $\overline{E_1 + E_2} - (E_1 + E_2)$. As $\mu^* \in D_{E_1}, \nu^* \in D_{E_2 + M}$ and $G(\mu^*, \nu^*) = 1$, (μ^*, ν^*) also minimizes $G[\mu \in D_{E_1}, \nu \in D_{E_3 + M}]$ by Lemma 5. Hence,

No. 1.] Equilibrium Potentials and Energy Integrals.

 $C\{P; P \in E_2 + M, g_2(P) < 0\} = 0$

and so $C\{P; P \in M, g_2(P) < 0\} = 0.$

Therefore, $C\left\{P; P \in M, \sqrt{\frac{y}{x}} g_1(P) > 0\right\} = 0.$

Similarly, $C\{P; P \in E_1 + M, g_1(P) < 0\} = 0$,

and so $C\{P; P \in M, g_1(P) < 0\} = 0.$

Thus, $C\{P; P \in M, g_1(P) \neq 0\} = 0.$

As M may be taken arbitrarly in

$$\overline{E_1+E_2}-(E_1+E_2),$$

we obtain $g_1(P) \cong 0$ in $\overline{E_1 + E_2}$. Let μ_0 be the equilibrium distribution on $\overline{E_1 + E_2}$. Then

$$0 = \int_{E_1 + E_2} g_1(P) d\mu_0(P) = z^2 V_{E_1 + E_2} - zx V_{E_1 + E_2}$$

and so z = x.

Finally,
$$\int_{E_1} \varphi(r_{PQ}) d\mu^*(Q) \cong \int_{E_2} \varphi(r_{PQ}) d\nu^*(Q)$$

in $\overline{E_1 + E_2}$, which contradicts to Lemma 2.

Corollary: Under the same condition

$$\frac{\iint_{E_{1}} \varphi(r_{PQ}) d\mu(Q) d\mu(P) \times \iint_{E_{2}} \varphi(r_{PQ}) d\nu(Q) d\nu(P)}{\left[\int_{E_{1}} d\mu(P) \int_{E_{2}} \varphi(r_{PQ}) d\nu(Q) \right]^{2}} > 1$$

for $\mu \in D_{E_1}^m$ and $\nu \in D_{E_2}^n$, where m and n are arbitrary positive numbers. As an immediate consequence of this corollary, we obtain

Theorem: Let $\varphi(t) \ge 0$ and satisfy the conditions a) and β). Then an energy integral

$$I(\sigma) = \iint_{E} \Phi(P_Q) d\sigma(Q) d\sigma(P)$$

with respect to any mass distribution σ on a bounded Borel set E, if it exists, is always ≥ 0 ; especially the equality holds if and only if $\sigma \equiv 0$.

Remark: In our proof, we can easily see that the non-negativity

15

of $\mathcal{P}(t)$ has only to be supposed in $(0, \delta(E))$. Accordingly, we obtain the following corollary: Let $\mathcal{P}(t)$ satisfy the conditions a) and β . Then an energy integral

$$I(\sigma) = \iint_{E} \Phi(r_{PQ}) d\sigma(Q) d\sigma(P)$$

with respect to any mass distribution σ of algebraic 0 on a bounded Borel set E, if it exists, is always ≥ 0 ; especially the equality holds if and only if $\sigma \equiv 0$.