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24. On the Theory of Semi-Local Rings.

By Masayoshi NAGATA.
(Comm. by Z. SUETUNA, M.J.A., May 12, 1950.)

Introduction.

The concept of local ring was introduced by Krull [7]®. That
of semi-local ring, a generalization of local ring, was introduced
by Chevalley [1]. It was defined namely as a Noetherian ring R
possessing only a finite number of maximal ideals. If m denotes
the intersection of all maximal ideals in a semi-local ring R, then

F\mn=(0), and so, R becomes a topological ring with {m"} as a
n=1

gystem of neighbourhoods of zero. Chevalley derived many prop-
erties by making use of the concept of ring of quotients introduced
by Grell [6]. He also introduced, in [2], a generalization of ring
of quotients, in order to generalize Proposition 8, § I, [1]. But this
generalization was only with respect to a Noetherian ring and the
complementary set of a prime ideal. A further, and very natural,
generalization of the concept of ring of quotients was given by
Uzkov [6]. But it seems to me that also this generalization is not
convenient to be applied to a generalized theory of semi-local rings
which I want to present in the following. So we first introduce,
after a short discussion of Uzkov’s ring of quotients, a notion of
topological quotient ring, which constitutes Chapter I. In Chapter
II, we introduce semi-local rings in our generalized sense. They
enjoy, besides some other properties, most of the propositions in
[1]; an exception is the assertion that R is a complete semi-local
ring with the intersection m of all maximal ideals and if R’ is a

ring such as (1) R’ contains R as a subring and (2) ?\mR’=(O), then
n=1

there exists m(n) for each » such as w"™R'NRSm" (a part of
Proposition 4, II, 1). Appendix gives some supplementary remarks
eoncerning our generalized notions.

We list the correspondences between the assertions in the
present paper and those in [1, § II] or [3, Part I:

Throughout this paper, a ring means a commutative ring with
the identity element. Under a subring we mean a subring having
the same identity. We will say that « is integral over a ring R if
a satisfies a guitable monic equation with coefficients in R. @ de-
notes the empty set.

1) The number in brackets refers to the bibliography at the end.
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Chapter I. Rings of Quotients?.

1. Ras

Definition 1. Let R be a ring and S a subset of R closed under
multiplication and not containing zero. Let a be an ideal such as
S+a/a has no zero divisor in R/a. Then we denote by Ras the
ring of quotients of S+a/a with respect to R/a. (Throughout this
paper we maintain the meanings of R and S).

Definition 2. Let I be an ideal in R and Iy an ideal in Rag.
Then we denote by IRss the ideal ¢(I)Rasy in Ras and by I;DOR
the ideal ¢-'(I;N\R/a), where ¢ is the natural homomorphism of R
into R/a.

We see readily :

(1) (IsN\R)Ras=I for every ideal I; in Raqy.

(2) (aNIp)NR=IgN\R)NUI:NR) for any two ideals Iy and
Igz in Ras.

(3) Let p be a prime ideal in R and q a primary ideal be-
longing to p. Then (a) if pN\S=0 we have q\S=k6 and pRas=qRas
=Rays; (b) if pN\S=60 and qa, qRas is a primary ideal belonging
to pRas, furthermore, pRos\R=p and qRuas/\R=q; q is strongly
primary if and only if qRas is so.

(4) If I =}‘Qq)\ is an intersection of primary ideals g, in R and
if I2a, we have‘ IRus= [\qARas.

(5) If I= —f\qi is an 1ntersect10n of pr1mary ideals g, in R and
if ¢q,2a or qJ‘\S:}:() for each i, we have IRas'—ﬂ%Ras- If the in-

tersection f\qi is irredundant, it gives again an 1rredundant intersec-
i=1

tion when the components qRag=Ray are omitted.

2) Except in the definition of topological kernel of R (Definition 5), we need
not assume the existence of the identity in R, throughout this Chapter.
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2. Rings of quotients (cf. [6]).

Definition 3. Let U={a € R; as=0 for some s€S}. Then we
call Rys the ring of quotients of S with respect to R, and denote
it by Rs.

Lemma 1. U is an ideal and S+U/U has no zero divisor in R/U.

(Proof) 1If a, beU, as;=0, bs,=0 for some s, s,€S. Hence
(@ +b)s;s,=0, s;3,€S. It follows that U is an ideal. If sx=0 (mod.
U) (seS, x€ R), we have s’sx=0 for some s’ €S. Therefore xeU.
This proves that S+U/U has no zero divisor in R/U.

Remark 1. If q is a primary ideal in R such as ¢N\S=0, then
we have qDU.

Remark 2. Every Ras, with allowable a, is a homomorphic
image of Rj.

3. Topological quotient rings.

Lemma 2. Let I be an ideal which does not meet S. Then
there exists an ideal p such as p>DI, p/\S=0 and every ideal prop-
erly containing p meets S. p is necessarily a prime ideal.

(Proof) The existence of p can be proved by Zorn’s Lemma,
and p is prime because S is closed under multiplication.

Definition 4. The ideal p in Lemma 2 is called a maximal ideal
with respect to S.

Definition 5. Let {p,; 1€ 4} be the totality of maximal ideals
in R with respect to S. We call the intersection Dy of all strongly
primary ideals belonging to some p,(4 € 4) the topological kernel of S
with respect to B. When S={1}, we call Ds the topological kernel
of R.

Lemma 4. Let D be an intersection of some primary ideals
which do not meet S. Then S+D/D has no zero divisor in E/D.

(Proof) Trivial.

Definition 6. Let Ds be the topological kernel of S with respect
to R. Then we call R, the topological quotient ring of S with
respect to R, and denote it by R.

Note: When S is the complementary set of a prime ideal p,
we use “of p” in place of “of S” and we use the notations Ry and
Ry, in place of Ry and R respectively.

Chapter II. Semi-Local Rings.

1. Generalized semi-local rings.

Definition 1. A generalized semi-local ring is a ring whose
topological kernel is (0). In any generalized semi-local ring R a
topology can be introduced by taking ideals m™@, m®, ... to be neigh-
bourhoods of zero, where m™ is the intersection of all n-th power
of maximal ideals. This is the natural topology of generalized semi-
local ring.



134 M. NAGATA. [Vol. 26,

Definition 2. A semi-local ring is a generalized semi-local ring
which has only a finite number of maximal ideals.

Local rings, which were already defined in [8], may be defined
as follows ;

Definition 8. A local ring is a semi-local ring which has only
one maximal ideal.

Proposition 1. A generalized semi-local ring R is a subring of
the direct sum of Ry,, (1€ 4) where {p,; e A} is the totality of
maximal ideals in R. If we introduce in the direct sum the strong
topology of product space, then R becomes its subspace.

(Proof) Trivial.

Proposition 2. A generalized semi-local ring has a completion
R. R is again a generalized semi-local ring. If , and p, are two
distinct maximal ideals in R, p,/\R and p,/\R are distinct maximal
ideals in R. There exists an inclusion preserving one-to-one cor-
respondence between all of closed ideals in R and some of closed
ideals in R; if a and a correspond to each other, a/\R=a and the
closure of aR in R is a.

(Proof) This follows from the general theory of completion of
topologiecal ring.

Remark. If R is a semi-local ring, R is also a semi-local ring.
If R is a local ring, R is also a local ring.

Proposition 3. Let R be the completion of a generalized semi-
local ring R. If an element u of R is not a zero divisor in R and
if every um® is closed in R, it is not in R either.

(Proof) Let uv=0 (ve R). We take a sequence (v,) such that
v—v, €M™, uv,cum™, and we have v, € m™ because u is not a zero
divisor in R. Hence v=0.

2. Semi-local rings.

Let, throughout this section, R be a semi-local ring and m be
the intersection of all maximal ideals p,, ---, p, in R.

Proposition 4. Let a,, -+, a, be h elements in R. Then the
system x=a, (mod. p?) (i=1,2, -+, ) is solvable, and all the solu-
tions are congruent modulo m".

(Proof) Let a¢=j£\£p,. Then af+p7=R. Let ¢, be an element
of a} such as ¢;,=1 (mod. pj). With such e, (1=1,2,---,h) we

h
have that x=3e,,a, is a solution. If 2’ is another solution, we
=1

I 13 . h
have (2'—2) 3 €,,=0 (mod. m™). >.e;, is a unit, because @21 en=1
4=1 §=1 =

(mod. p,) for every j (j=1,2, +-+, k). Therefore &' —x=0 (mod. m").
Proposition 5. If R is complete, there exists a system of idem-
potent elements {e; 2=1,2, ---,h} such as ed&p;, eep; if =,
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g

Ei=1, €i€j=0 if j:l:i and Rsi is isomorphic With R[p“=Rp,'.

(Proof) Take e, in the proof of Proposition 3. The A se-
quences (e;,) (¢=1,2, ..., h) are convergent. Their limits ¢, fulfills
our requirement.

Remark. This proposition shows that R=R+-.--+ R, (direct
sum), R being local ring with ¢ as identity, and R is also the
product space of Re,.

Proposition 6. Let E be the completion of R. Then R, ex-
plained in Proposition 5 is isomorphic with the completion of Ry,
where p; is the intersection of R and the maximal ideal which cor-
responds to e;.

(Proof) If we observe the fact that the kernel of natural

homomorphism of R into R, is ﬁp;‘, Proposition 6 follows from
n=1
Proposition 5.

Proposition 7®. A semi-local ring R is Noetherian if and only
if (1) every ideal is closed and (2) every maximal ideal hag a finite
basis.

(Proof) If R is Noetherian and if a is an ideal in R, Rfa is
clearly semi-local. Therefore a is closed. Converse follows from
Propositions 2 and 5 and the fact that a complete local ring whose
maximal ideal has a finite basis is Noetherian: [8, Corollary to
Proposition 2], [3, Theorem 3].

We mention by the way also.

Proposition 8. A local ring R whose maximal ideal is principal
ideal (x) is a Noetherian local ring.

(Proof) Observe the fact that every ideal but (0) is an ideal
generated by a2 for some n.

3. Some further properties.

Lemma 19. An element q is integral over a ring R if and only
if there exists a ring R’ such as (1) R’ contains R as a subring,
(2) R’ is a finite R-module and (3) R’ >a.

(Proof) If aisintegral over R, R’=R[a] satisfies three conditions
above. Conversely, if R’ is such a ring as above, we can set

)
it

=

1
R'=3 Ry, with y,=1. Then we have ay=3ay; (a;eR, i=1,2,
i=1 421

ceo, h). If we set f(a)=|ad,;—ayl|, f(a) is a monic polynomial on
a with coefficients in R. We have f(a)y;=0 (:=1,2, ---, k). There-
fore f(a)=0.

8) We can exclude neither of these 2 conditions: It is clear that we cannot

exclude the condition (1); the example in Appendix (2) of [8] shows that we cannot
exclude the condition (2).

4) I owe this proof to Prof. G. Azumaya.
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This being said, we shall also make use of the following lemma
due to Cohen and Seidenberg (cf. Theorem 2, §1, [4]P).

Lemma 2. Let R’ be integral over a ring R. Then for every
prime ideal p in R there exists a prime ideal P in R’ such as
PNAR=p.

Corollary. Let R’ be a ring containing R as a subring and
which is a finite R-module. Let a be an ideal in R. Then aR'==R’.
Proposition 9*. Let R be a semi-local ring. Let R’ be a ring
containing R as a subring and finite over R. Then R’ is a semi-
local ring and R is a subspace of R’. If R is complete, R’ is also
complete.

(Proof) Let P be a maximal ideal in R, PR is a maximal
ideal in R. If p is a maximal ideal in R, then R’[pR’ is a finite
module over the field R/p. This shows that there exists only a finite
number of (maximal) ideals in R’, say P, - -+, P, and that (B,---B,)*
CpR’ for some k. This proves the first part of our assertion.
Now, let R be complete. Let (v,) (n=1,2, --.) be a convergent se-

quence in B’. We set R/=f§Ry" Then we write vn—vn_l—:Ej Un, Y

where u,; are elements of the intersection of all m(n)-th powers
of maximal ideals with m(r)t~ and v,=0. Then (u,;) (n=1,2, ---)
(j=1,2, ---, m) are m convergent sequences in R. Let a; be their
limits respectively. Then ‘Ejjajyj is the limit of the sequence (v,).

This proves the second part of our assertion.

Proposition 10. Let R be a complete semi-local ring (with
maximal ideals p,, ---,p,). If R’ is a ring which contains R as a

subring in which F \lm"R’=(0) (where m=f\lpz), then mR'N\R=mn.
Furthermore, if R'/mR’ is a finite R/m-module, R’ is a finite R-
module, whence R’ is also a complete semi-local ring by Proposition 9.

(Proof) It is clear that mR'N\R”m. If mR'N\R=Fm, there
exists at least one maximal ideal, say p,, such as pR'=R’. Then we
have m"R’=(p,\+++ N\pu)"R’, contrary to our assumption. So neces-
sarily mR’'N\R=m. Now we assume that R’/mR’ is a finite R/m-

module. We set R’/mR’=§:, (R/m)v;} and choose for each ¢ an element
v, from v}. Let x be grlxy element of R'. We cor;struct d se-
quences (z,,) (t=1,2,+--,d; n=0,1,---) such as z=> x;,v; (mod.
m"R’). We set x,,=0 for each i. If a,, (1=1,---, d;=1are already
defined, we write w-—;xmw=§,‘lyk& with y.e R, &em® Then

5) The proof can be simplified if we make use of the notion of the rings of
quotients.
* See Correction at the end.



No. 5.] On the Theory of Semi-Local Rings. 137

we can write y.= E:t//cm (mod. mR’) (yr;€R). We Set 2, =%in
+Z,ymé,c (t=1, «--, d). Then each (w,,) is convergent in R; let z,
be 1ts limit (¢=1, --.,d), and set &'=>) xw;,. Then &’'—xcm"R’ for
every m, namely, ’=x. Therefore Ri’=§t]Rv¢.

Proposition 11. Let R and R’ be two semi-local rings such that R’
contains R as a subring and a subspace and is a finite R-module. Let
R and R’ be the completions of R and R’ respectively. Then, if

=§;_‘,1Ryi, §’=i2i1§yt (up to an isomorphism).

(Proof) Since R is a subspace of R’, R is also a subsapace
of R’. So we can consider R as the closure of Rin R’. Then our
assertion follows from the fact that 3 Ry, is a complete semi-local
ring. '

Proposition 12. If we assume, besides the assumption in Pro-
position 11, that R has no zero divisor in R’, we have, (1) if ele-
ments x,, .-+, ¢, of R’ are linearly independent over R, they are
so over R, (2) if an element u of R is a zero divisor in R’, it is
already so in R.

(Proof) We can assume without loss of generality that z,, ---,
, I8 a maximal system of linearly independent elements. Then
we can find an element ¢ of R such that cR'CZ Rz, (c==0). If
Zum~0 (u;€ R) we choose m sequences (u;,) (z-—l «++,m) such as
hm Uy =u; and ;cui,nwie ;,m”xz, namely, iz,cu.mwt—-; Wiy Ay € M,
where m is the intersection of all maximal ideals in R. Since x,,
..., x, are linearly independent, we have cu;,=a,,, namely cu,, € m",
whence cu,=0 (for every ¢). We have u,=0 for every ¢. Let next
an element % of R be not a zero divisor in E. Assume uv=0 (ve R’).
We can write cv=i2 a; (;€ R). Hence, }i_“,ua¢x¢=0 and therfore
uag=0 (1<i<m). Then we have =0 (l<i<m). So, cv=0 and
v=0.

Proposition 13. Let q be an ideal in a semi-local ring R. Then
R/q is again a semi-local ring if and only if g is closed in R. Let,
when this is the case, 7 be the closure of q in the completion R of
R. Then R[q is the completion of R/qg.

(Proof) The first part is evident, while the second follows
from Proposition 2.

Proposition 14. Let R be a semi-local ring with maximal
ideals p,, +++,p, (2>1). Then there exists an element » such as

wep\+++Np- and u¢p,; for j>r, where 0<r<h.
(Proof) Trivial.
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Proposition 15. Let R be a semi-local ring with maximal ideals
Py o, e If R is a subdirect sum of Ry,, R is the direct sum of
Bpy-

(Proof) When %=1, our assertion is trivial. We will assume
that A>1 and our assertion holds for semi-local rings with A—1
maximal ideals. We set Ry,=R;,. Then a=R/N\(R,+---+R,) is an
ideal in R. Further, R/a=R, by natural mapping. Let u, be an
element of R such as wu¢yp, and w,ep, for any ;>1. The
residue class of u, module q is a unit in B,. Therefore if we write
Uy=v,4+++-+v, (v;€ R;,), we can assume that v,=e¢, where ¢ is the
image of 1 in R, and it is true that v;ep,R; for any j>1. Then
v;=¢; (mod. a), wI;ere ¢; is the image of 1in R, because l=¢ +.--
+epe u2=1—u1=-?_‘,=2(ej—v,)ea. u, is a unit in R,+.--+R,. Let b,
be the inverse element of u, in R,+---+R,. Then there exists an
element b=c,+b, € R, ¢;e¢ R for R/[RNR, is a semi-local ring with
h—1 maximal ideals. Then bu,=e,+ -+ +¢,. Therefore 1 —(e,+---
+¢,)=¢ € R. Therefore RR<R; R/R=R,+.--+R,. This proves
our assertion.

It seems to me very likely that if a complete semi-local ring
R’ contains a (semi-local) ring R as a subring and is a finite R-
module, then R is complete. But I have been able to prove only
some special case as follows :

Lemma 3. Let R be a Noetherian semi-local ring having no
zero divisor. If there exists a complete semi-local ring R’ which
containg R as a subring and is a finite B-module, then R is complete.

(Proof) The completion R of R is then a finite R-module. Let
u be an element of B. Then 1, u are linearly dependent over R,
by Proposition 12. Therefore au=p (a==0) for some a, fc B. Since
R is Noetherian, aR is closed. Therefore «R > . Since « is not a
zero divisor in B (by Proposition 8), u < R.

Proposition 16a. Let R and R’ be two semi-local rings such as
(1) R is a direct sum of a finite nubmer of Noetherian semi-local
rings, each of which has no zero divisor, (2) R’ contains R as a
subring and (3) R’ is a finite R-module. Then R is complete if
(and only if) R’ is.

(Proof) This follows immediately from Lemma 8.

Proposition 16b. Let R and R’ be two semi-local rings such as
(1) R’ contains R as a subring and (2) R’ has a linearly independent
basis {y;=1,y,, ---,y,} over R. Then R is closed in R’. Therefore
R is complete if any only R’ is.

(Proof) This follows readily from the fact that R is a subspace
of R'.

Remark. If a ring R is a subring of a semi-local ring B’ which
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is integral over R (or, as a special case, finite over R), then R is
a semi-local ring.

Appendix.

Proposition 17. If D is the topological kernel of R, then
Rg/D=R,.

(Proof) Trivial.

Therefore (1) R is a generalized semi-local ring and (2) if
Ry is a generalized semi-local ring, Ry=R,g,.

Proposition 18. Let R be a Noetherian ring. If the family of
maximal ideals with respect to S is finite, R,=R,.

(Proof) Let p, ---, p, be all the maximal ideals with respect
to S. Then R, is a Noetherian ring having no maximal ideals
other than p,Ry, ---, pRs. Therefore Ry is a Noetherian semi-local
ring.

Proposition 19. A necessary and sufficient condition for a ring
R to be a subring of a generalized semi-local ring is that zero ideal
is an intersection of some strongly primary ideals.

(Proof) If (0) is the intersection of strongly primary ideals
qa(1 € 4) belonging to p, respectively, then R is a subring of the
direct sum of all Ry,. Conversely, if R is a subring of a generaliz-
ed semi-local ring R’, (0) in R is an intersection of strongly primary
ideals because (0) in R’ is so.
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Correction.

Read Proposition 9 as follows:

Proposition 9. Let R be a semi-local ring and let R’ be a ring
containing R as a subring and which is a finite R-module. Then
(I) R’ possesses only a finite number of maximal ideals. (II) If
there exist elements ce¢ R, @i, ..., x, ¢ B’ such that ¢ is not a zero
divisor in R’ and z,=1, x, ..., @, are linearly independent over R

and that cR’CZRwi, then R is a semi-local ring. (III) If R’

possesses 2 hnearly independent module basis over R, R is a closed
subspace of R’ (by virtue of (II), R’ is a semi-local ring). (IV) If
R’ ig semi-local and if R is complete, then R’ is also complete.



