
No. 6.] (6) 17

On the Radiation Pressure in a Planetary Nebula. I.

By Wasaburo UNNO.
(Comm, by Y. HAGIHARA, M.J.A., June 12, 1950.)

Abstract.

The radiation pressure of the Lyman line-radiation in a planetary nebula is
discussed: Zanstra’s 1) idea of redistribution in frequency in the line-contour is
taken into account in detail. The equation of transfer of the Lyman radiation
with redistribution mechanism is solved in contrast with Zanstra’s rough treatment
in which a definite form of emission and complete redistribution are assumed. The
result obtained is found to be nearly the same as in Zanstra’s theory. The
radiation pressure due to the Lyman radiation is so much reduced that we
should be able to get rid of the blowing-up difficulty of planetary nebula in
Ambarzumian’S) theory. Thus it is confirmed that the complete redistribution
is a good approximation to the solution of this problem.

1. The fundamental equation.

The basic equation for the transfer of the Lyman a radiation
in the shell of a planetary nebula i$ taken to be

pdz c

+ +(vr’)], z, O’)+ Se-(v[1--’vr)])(v)dv’‘l)c
where z-axis is taken in the direction of direct radiation from the
central star, I(, z, O) the intensity of the L radiation at an angle
# with the z-axis at the distance z from the inner boundary of the
nebula, (v)dv is the well-known Maxwellian velocity distribution
of the hydrogen atom in its ground state, the natural damping
contour; and Se- is assumed to be the amount of the L emission
followed by the absorption of the Lyman continuum at the optical
thickness r"

= s,(1-
20 4

where S is the intensity of the Lyman continuum at the inner
boundary the frequency of Lyman limit, , and 0 are the absorp-
tion coefficients at the Lyman limit and the line center of Doppler
contour of the L. The first term of the right hand side in the
equation (1) is due to the absorption and the second and the third
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terms are due to the emission of frequency r followed by the
absorption of the diffuse L radiation and the Lyman continuum.
The square bracketed factor preceded by r is the effect of the
Doppler shift due to the thermal motion of the atom. The integral
factors in the first and the hird terms give the Doppler contour.
If we neglect the width of the natural line-contour we can simplify
it in the following form-

v. 1/2v;’/Ti o( [1
xV_ v =e ,oT "(;0)’N,

= % e-,, % e- = % (,), 2 )

w-here is the axis taken in the direction of radiation concerned
and D is the Doppler width of the line. The, second term is rather
complex owing to the double integrals with respect to v and t.
w and represent the directions of radiation concerned and the
absord diffuse Lyman a radiation. We take the -axis in the
direction of r as before and use the cylindrical coordinates"

v (v, , v), (sin 0t, t, cos 09, then

vr v cos 0 + v sin 0 cos (--) v cos 0 +v sin 0 c .
We take the natural line-contour much sharper than the Doppler
so that

(v[1--@])= (u0) when [1--@] =,
and 0 otherwise.
Then we can integrate with respect to v and , and the term
will easily reduce to the form"

+12

% (u) I(+ + BD 1-- cos , ,09 Be-’ dBd
where 2D u v and mv kT. is the complicated function of

c
angular variables, but we neglect the variation of I with because
the integrations are carried out with these angular variables.
Therefore we can replace I by J, the source function, and we get

cos 8 d I(, z, )
dz % () [--I6, z, ) + Se-

+1 2

"-" (3)
Next we introduce new quantities s, p (a), and u by the equations,



No. 6.] On the Radiation Pressure in a Planetary Nebula. I. (6) 19

ds % dz %, () % % p ()
d. uds or v us.

u is the ratio of , and % and is of the order of 10-. Writing
eqtion (3) with the new variables, we get

cos d I(x, s, ) p(x)[_ I (x, s, 8) + Se
ds

+1 2

1

Making use of the Eddington’s approximation, we obtain the
equations which determine the flux F and the source function J,

F(., s) 4 1 d 3 (x, s) ( 4 )
3 () ds

and
d- J(, s) 3p() [j (, s) Se

0-1

This is the fundamental equation to be solved.

2. The solution of the first approximation.

The line contour is symmetrical with respect to the frequency
of the line center, therefore, we need only to treat one side of it.
We divide the line contour into two frequency ranges; the nebula
is opaque and semi-transparent for the radiations of the first and
the second frequency ranges respectively. Then the equation (5)
becomes the simultaneous equations, viz.,

d (I, s) q(i) [(1, s)-- {(1--a) (I, s)+ai(II, s)}--Se-’]482

I 1
ds - [(1-- a,) (II, s)+ %, (I, s)]

+-g- [(- (, + %(H, ?] -Se (

where ( s) and q( ) stand for J and 3p in the respective fre-
quency range, and as are the redistribution factors. The redis-
tribution factors represent the effect due to the tangential thermal
motion term 2Bv/i-- cos b in equation (5). Let the widths of
the ranges I and II be 2w, then a s in the above equations are
roughly determined by the following equations:
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+I 2

2-

3w> 2Bv/1-g2 cos 6 > w

II 4qr

8w < 2Bzi--2 cos 6 <-- w

%z"-- @rl 2Be-:dd6, - 4

8w > 2B/I -g cos 6 > w ( 7 )
Equations (6) now become

d2 (I, s) q (I)2 [% {(/, s)--(II, s)}--Se-’]
ds.

g(II, s) q (Ii) [_ {(I, s)----(II, s)}
ds" %, ( 8 )

where %z all--

Equations (8) are the simultaneous linear differential equations,
therefore he solutions are obtained easily.

and

(I, s)
S

(9b)

1 1 d(I, s)
S q(/) ds
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1 1 d(II, s) %+aHq(II) (1._e_9 + %__ uq(II)
S q(I1-) ds 1 7 1 0)2

1 a, q(II) [2 (%+%) q(Ii)

+ {e-"" e-’-’ (10b)

where %q(D
On obtaining the solutions (9), we have used Milne’s boundary

conditions of the planetary nebula"

F(0)=0 or d(,s) =0 at s=0 for the inner boundary,
ds

.and

F(s)=2J(s) or d(,s) !/.q( )( ,s)=0 at s--s for the
ds 2

uter boundary, and further we have omitted the negligible small
erms by comparing, with each other, the order of magnitudes of
%he quantities, e.g.,

q(/)l q(H)10- --10-a’s 10-1 u 10-a s I0

3. The second approximation and summary.

The second approximation is obtained by subdividingthe contour
into several regions and putting the solutions of the first approxi-
mation into the terms of the right hand side of equation (5) with
%he exception of the terms of the frequency range which we shall
determine. And the solution is obtained easily. In spite of the
more complex appearance of the solution, it is not much different
in nature from the first approximation. It may be sufficient for
obtaining a good result if we take the value of q in the solution
of the first approximation appropriate for the frequency range

considered, instead of the solution of the second approximation.

Hence we omit the expression of the solution of the second
approximation.

We are interested
in the source function,
"he radiation pressure,
and the radiation flux
mainly in the central
part of the nebula. For
"he outer par of the
nebula more detailed Fig. 1. The Source Function.

discussion is required, which will be discussed in a subsequent
paper. The source function is very flat as is seen from tho
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expression (9) and Fig. 1. The flux of the line radiation which is

Fig. 2. The Flux.

proportional to
d(,s)

q ds
is very little (10-) in
the line center com-
pared with the lne
wing where q is of the
order of 10-, and is

illustrated in Fig. 2. Hence the radiation pressure, being propor-

tional to I. d(, ’S)dv is 10- times smaller than tha of the old

theory of/kmbarzumian, and comparable that of Lyman continum.
This result is shown thus to be nearly the same as that of
Zanstra’s theory in which the complete redistribution of frequency
in he line is assumed. Therefore, it is found from our result:
that the complete redistribution approximation is fairly appropriate
for treating the radiation pressure due to the line radiation.


