No. 1.} 1

1. On Riemannian Spaces Admitting a Family of
Totally Umbilical Hypersurfaces. 1.

By Tyuzi ADATI.
(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1951.)

§1. Let V, be an n-dimensional Riemannian space with the

fundamental tensor g,, (Luw,... =1, 2,...,n) and assume that

there exists a family of totally umbilical hypersurfaces

1.1) a(x?) = const..

If we denote the parametric represe{lt?,tion of: it:,s hypersurfaces

by 2t = aMa®) (0, 0,k ... =1,2,....,n—1),

then from (1.1) we have by differentiation with respect to «°
Bt =0,

where o= ';’a‘c—r"’ B;‘=%;. Furthermore, differentiating

with respect to 2/, we have
ox;u B B + oy Hi* = 0,

where H;*is an Euler-Schouten’s curvature tensor. If we denote
the fundamental tensor and normals of the hypersurfaces by g,
and B* respectively, we have, because of H;* = Hg,; B,

ox.p Bi* Bi* + Hoy Bg; = 0,
from which follows
(o2;u + Hoy B g3,) Bi* B#* = 0.
Congequently o,., must take the form
1.2) Crsp = POy + Vaoy + V0,

where p = —Hoy, B® and v, is a certain vector.

Conversely, if (1.2) holds, we know easily that the hypersur-
faces o(x*) = const. are totally umbilical.

Differentiating (1.2) and substituting the resulted equations
in Ricei identities o,y —or, v = —o, By, We have

(13) — 0w Rujllw = {(PV—PUV) glp-“(pv.'—va-) g}.v}
+ {(v);v“’vk ) O'y._('vl;p""'vl vp.) a'v}+0'A (’Uu;v—‘vv;u) .

If we put o) = ‘l/_o""a'u B,, where o*s, = g*'o,0y and B, = ¢,,B”, we
have from (1.3)
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(1.4) B.B'B}B{#R5,, = 1
oo,

+B;i* Bi* (Va,u—0a ).

a*(py— P V) i

On the other hand, according to Gauss equations, we have
Rf‘;kh = B‘;’}Z}." R.A»u..,-i-f.'l2 (95: S —gsn Sl';)a

where R;, is the curvature tensor of the hypersurfaces and
B¥w = B, B# B B;". Summing for ¢ and 4, we have

Rj. = (83 —B2B") B}*Bi’Rl\.y, + (n—2)Hgse
= B;*Bi’R,,— B\B*B;*Bi’*R}\.,., + (n—2) H?gj..

Substituting (1.4), we obtain
(1.5) Rj, = B#BR,,— B;j*Bi#* (v,,,—v7,)
+ {(n—2)H*+ 1 a*(py—p ) } gin-
oo

n

Putting »,B;* = v; and differentiating with respect to z*, we
have

Vau Bi* Bi* + vy Hy = v;,1
from which follows
Vp B Bi = 03,1 — va B* Hys. .
Thus (1.5) takes the form
(1.6) Ry, = B#*Bi’R,y + v; v, — V5.0 + B«

Since v;,% == 4,5, we find that v; is a gradient vector.
Now we put

R Rg,
I, = — An "
w = s g

and assume that /7,, takes the form
(1.7) Illl& = UGrn -+ CA oy +'Cp, Ca.y

where u is a scalar function of 2* and ¢, a certain vector. In
this case, directions orthogonal to the vectors o, and ¢, are Ricei
prineipal directions. Substituting R,, obtained from (1.7) in (1.6),
we have the equations of the form

(1.8) Rj/, = Y + ViV — sk -

Thus we have
Theorem 1.1. In order that the tensor I7,, of a space admitt-
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ing a family of o' totally umbilical hypersurfaces o(x*) =const.
takes the form

T, = ug,, + {iop + Quoa (0‘). = Eaxg{ ’
it is necessary and sufficient that the Ricei tensors of the hyper-
surfaces take the form

Ry = vgu + V% — V51,

where v; is a certain gradient vector.
Especially when tangential directions of the hypersurfaces are
all Rieeci directions, (1.7) takes the form

(1.9) H—;p_ = UGrn + KT)\Ty, «

Thus we have

Cor. 1. If tangential directions of the totally umbilical
hypersurfaces o(x*) =const. are Ricei principal directions, then
(1.8) holds.

Cor. 2.2 In an Einstein space admitting totally umbilical
hypersurfaces o(z*) =econst. (1.8) holds.

§2. Assuming that (1.7) holds, we shall calculate the scalar
curvature B of the totally umbilical hypersurfaces o(#) =const..
From (1.5) we have

@2.1) R = ¢* Ry, = ¢"Bj*Bi’Ryy—(¢"*—B*B¥) (v3,,—2v,)
+ (=)= H + —— *(p,—pm)}.

Op.

Since we have from (1.7)

R
By = {50y = (0= 2D (0=2) o+ G,
we obtain
2.2) ¢*B#Bi'R,, = 5;. —(n—1) (n—2)u .

Moreover, from (1.3) we have

—0ouRS = (1—1) (py—p0y) + o*(Vr;y—1205) — g™ (¥3,,—20,.) 0y
+ 0 (V25 —Wy;2)

Multiplying by ¢’ and summing for », we obtain
(2.3)  —0“0"R.y = (n—1)0"(py—pvy)— "o (g**— B*B*) (05, ,—v,0,).

However, because of (1.7), we have
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a“a"R,y = {2“(-,?:_3 —(n—2u—2(n—2)s"¢,} "o y.

On the other hand, multiplying (1.7) by ¢** and summing for 2 and
#, we have

R

— = 25l .
2n—1) nu+20C,

Thus we have
w v _(R v
"R,y = (E +(n—1) (n—2)u) ¢’y .

Substituting in (2.3), we have

1,

(2.4) —(g"*—B*B*) (03,,— 0, +’f7;; a*(py—pv)
3

=—-.‘;£-(n—1) (n—2)u.

Substituting (2.2) and (2.4) in (2.1), we obtain
B = (n—1)(n—2) (-2 u+H).

When V,, is an Einstein space, (1.7) becomes

2.5) Iy = U ga,
and consequently u = — ——jm—, from which follows
2n(n—1)

B =@n-1) (n—z)(Z(%j + H)

If » >3, R=const.. Since normals of the hypersurfaces + =const.
are Ricei directions, also H=const.. Thus we have

Theorem 2.1.2 In an Einstein space admitting a family of
totally umbilical hypersurfaces, the mean curvature and scalar
curvature of the hypersurfaces are constant on the hypersurfaces.

§3. From the theorem 1.1 we have readily

Theorem 3.1. In a space admitting a family of totally um-
bilical hypersurfaces o(x*) =const., if the tensor 1/, takes the
form (1.7)

IIM,, = UGxp -+ CA‘TM- -+ Cpa';‘

and the hypersurfaces o(x*) =const. are all Einstein spaces, the
equations of the form

vi=j = a:gij -+ 'v.t'vj

hold, that is to say, the hypersurfaces admit a concircular trans-
formation.”
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When we replace (1.7) by (1.9)
I, = U g + kT30
and also by (2.5)?
Iy = ug), (V, is an Einstein space),

the theorem holds.
Next we consider the case when the totally umbilical hypersur-
faces o =const. are conformally flat. We assume » >3 and put

Rj R Gir .
n—38 2(n—2)(n—3)

From (1.8) we have
3.1) (n—38)1l; = vjp — V0% + T Gt »
where 7 is a certain scalar. Since

Hpn =0, Vit —Vg 6= — V52
we have
3.2) — VR — W0 —03302) + (r2 go—7192) = 0.
However

'vaTﬂcz = Qp (— 1, 87+ IT;, 87— gy 1173+ gy )
= '—Iljk v+ 1[;,'1 Vre—9: v,,.]lf’;‘+gﬂ ’Um”t';a.

Substituting (3.1), we have

va’Zl!/u‘l = -—,—rr];—g {('Uj; ]c’Uz—'Uj; 1?)1;) + 9 (27?);——?)’”’1),,,%
F V" Vs 1) — Gt Q0= V" V0V + V"™ Vne) }
Consequently (3.2) becomes

(8.8) (n—2) (V3,0 —5,500) + {(8—38) 71+ 27V — V" Vs
+ V" V1 y Gpi— { (0 — B)11 4+ 270, — V™V, + V"V 1y O = 0.

Multiplying by ¢* and summing for 7 and [/, we have
(3.4) ("3 + 2 7—v"v,) v+ (R—3) 7, = 0.
Multiplying (8.3) by + and summing for j, we have
8.5) (W, 10— V5,0)) + (Tv—T08) = 0.

From (8.4) and (3.5) we find that =, and v/v;, are proportional to
;. Hence from (3.3) we get the equations of the form

?Jj;;,; = O Qs + b Vj Vge
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Consequently (3.1) takes the form
Iy = pgi + 20 v,

from which follows that 2’ represents Rieci directions, namely the
hypersurfaces ¢ =const. admit concircular tranasformations.
Since a conformally flat space admitting a concircular trans-
formation is a subprojective space of B. Kagan,”? we get
Theorem 3.2. In a space admitting a family of totally um-
bilical hypersurfaces o(x*) =const., if the tensor II,, takes the
form (1.7)

I, = UGy + Caop + o

and the hypersurfaces are conformally flat, then these hypersurfaces
are subprojective in the sense of Kagan (n > 3).

When we replace (1.7) by (1.9) and also when V, is an Einstein
space,? the theorem holds.
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