30. Notes on Fourier Analysis (XL): Remark on the Rademacher System.

By Tamotsu TSUCHIKURA.

Mathematical Institute, Tôhoku University. (Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

§ 1. Let $\{r_n(x)\}$ denote the Rademacher system, and let $\{p_n\}$ (n = 1, 2, ...) be an increasing sequence of positive numbers. If we denote $P_n = p_1 + p_2 + \cdots + p_n$ and

(1)
$$\varphi_n(x) = [p_1r_1(x) + p_2r_2(x) + \cdots + p_nr_n(x)]/P_n$$

(n = 1, 2, ...), the following theorems are known (J. D. Hill [1]):

(i) The set of convergence points of $\varphi_n(x)$ is of measure 0 or $1^{(1)}$; (ii) if the series

(2)
$$\sum_{n=1}^{\infty} (p_n/P_n)^2$$

converges, then $\varphi_n(x)$ converges to zero almost everywhere; and conversely (iii) if $\varphi_n(x)$ converges in a set of positive measure, its limit is necessarily zero almost everywhere, and moreover

$$\lim p_n/P_n = 0.2$$

Let us consider now the condition which implies the convergence almost everywhere of $\varphi_n(x)$. It is also known that the condition (3) is insufficient to assert such convergence (G. Maruyama [4] and the author [6]). In this note, by determining the decreasing order of (3), we shall give a sufficient condition different from the convergence of (2)³.

THEOREM. If we have

(4)
$$p_n/P_n = o(1/\log \log P_n)$$
 as $n \to \infty$,

then $\varphi_n(x)$ converges to zero almost everywhere.

The condition (4) is the best possible one of this form, in fact, there exists an increasing sequence of positive numbers $\{p_n\}$ such that $p_n/P_n = O(1/\log \log P_n)$ as $n \to \infty$, and $\varphi_n(x)$ diverges almost everywhere. An example with this property was furnished by Mr.

¹⁾ We shall understand, throughout this paper, that the sets are included in (0, 1), that is, 0 < x < 1.

²⁾ Cf. Remark 3, § 3.

³⁾ Cf. Remark 4, §3.

T. TSUCHIKURA.

[Vol. 27,

G. Maruyama [4]: Let $p_1 = 1$ and $p_n = \exp(n/\log n)/\log n(n \ge 2)^4$, then by easy calculation we have $P_n \sim \exp(n/\log n)$, $\log \log P_n \sim \log n$ and $p_n/P_n \sim 1/\log \log P_n$; and as he proved the divergence almost everywhere of $\varphi_n(x)$ may be shown using the Kolmogoroff lemma on the law of the iterated logarithm.

§ 2. PROOF OF THEOREM. As P_n tends to the infinity with n, we can choose an integer n_1 such that

(5)
$$P_{n_1} > 1$$
, and $p_n/P_n < 1/3$ for $n \ge n_1$

in virtue of (4). We shall define a sequence of integers $\{n_k\}$ by induction. If $n_1, n_2, \ldots, n_{k-1}$ are defined, we can find an integer n_k such that

(6)
$$P_{n_{k-1}} < P_{n_k} \leq 2P_{n_{k-1}}$$
 and $P_{n_k+1} > 2P_{n_{k-1}}$;

this possibility may be easily conceived from the relation:

$$\begin{split} P_{n_{k-1}+1}/P_{n_{k-1}} &= 1 + (p_{n_{k-1}+1}/P_{n_{k-1}+1}) / [1 - (p_{n_{k-1}+1}/P_{n_{k-1}+1})] \\ &< 1 + (1/3) / (1 - 1/3) < 2 \end{split} (k \ge 2). \end{split}$$

The sequence $\{n_k\}$ is thus defined. Let us put

$$S_n(x) = p_1 r_1(x) + \cdots + p_n r_n(x), \ S_n^*(x) = \max_{1 \le m \le n} |S_m(x)| \quad (n = 1, 2, \ldots).$$

For a given $\delta > 0$, denote by $E_k(k = 1, 2, ...)$ the set of all x such that $|S_n(x)| > \delta P_n$ for at least one value of $n, n_{k-1} < n \leq n_k$, and put

$$M_{k} = \mathop{\mathbb{E}}_{x} \left[\left| S_{n_{k}}^{*}(x) \right| > \delta P_{n_{k-1}} \right] \qquad (k = 2, 3, \ldots).$$

If the series $\sum_{k=1}^{\infty} |E_k|$ converges for every $\delta > 0$, we may complete the proof in virtue of the well known Borel-Cantelli theorem, hence it is sufficient to prove the convergence of the series

(7)
$$\sum_{k=2}^{\infty} |M_k|,$$

since $E_k \subset M_k (k = 2, 3, ...)$. From the Marcinkiewicz-Zygmund inequality⁵⁾

(8)
$$\int_{0}^{1} \exp(aS_{n}^{*}(x)) dx \leq 32 \exp\left(\frac{1}{2}a^{2}B_{n}\right)$$

where $a = a_n > 0$ and $B_n = p_1^2 + \cdots + p_n^2 (n = 1, 2, ...)$, we have

142

⁴⁾ This definition is different from his in its form, but for our purpose these two are essentially the same.

⁵⁾ Cf. Remark 1, § 3.

No. 3.]

$$|M_k| \exp\left(a\delta P_{n_{k-1}}\right) \leq \int_0^1 \exp\left(aS_{n_k}^*(x)\right) dx \leq 32 \exp\left(\frac{1}{2}a^2 B_{n_k}\right).$$

Putting $a = \delta P_{n_{k-1}}/B_{n_k}$ we deduce easily that

(9)
$$|M_k| \leq 32 \exp\left(-\frac{1}{2}\delta^2 P_{n_{k-1}}^2/B_{n_k}\right) \quad (k=2, 3, \ldots).$$

On the other hand, by (6) we have

(10)
$$B_{n_k}/P_{n_{k-1}}^2 = (p_1^2 + \dots + p_{n_k}^2)/P_{n_{k-1}}^2 \leq p_{n_k}P_{n_k}/(P_{n_k}/2)^2 = 4p_{n_k}/P_{n_k}$$
,

and from (4) we have

(11)
$$p_{n_k}/P_{n_k} \leq \frac{\delta^2}{16} (1/\log \log P_{n_k})$$

for large k, From (5) and (6) we obtain that

(12)
$$P_{n_{k}} = P_{n_{k}+1} - p_{n_{k}+1} \ge \frac{2}{3} P_{n_{k}+1} > \frac{4}{3} P_{n_{k-1}}$$
$$> \cdots > (4/3)^{k-1} P_{n_{1}} > (4/3)^{k-1} \qquad (k = 1, 2, \ldots)$$

Combining (10), (11), (12) and (9) we deduce easily that

$$|M_k| \leq 32 \exp(-2 \log \log (4/3)^{k-1}) = 32/[(k-1) \log (4/3)]^2$$

for large k, and the convergance of (7) is proved, q.e.d.

§ 3. REMARK 1. The inequality (8) is essentially included in [3], but for the sake of completeness we shall prove it here. From the inequality ([3], Lem. 2)

$$\int_{0}^{1} \exp(aS_{n}^{*}(x))dx \leq 16 \int_{0}^{1} \exp(a | S_{n}(x) |)dx \qquad (a > 0)$$

and the Khintchine inequality (see for example, [2], proof of [456] p. 131)

$$\int_{0}^{1} |S_{n}(x)|^{2p} dx \leq \frac{(2p)!}{p! \, 2^{p}} B_{n}^{p} \qquad (p = 1, \, 2, \ldots),$$

we deduce easily that

$$\int_{0}^{1} \exp(aS_{n}^{*}(x)) dx \leq 32 \int_{0}^{1} \cosh(a | S_{n}(x) |) dx = 32 \sum_{p=0}^{\infty} \frac{1}{(2p)!} \int_{0}^{1} a^{2p} | S_{n}(x) |^{2p} dx$$
$$\leq 32 \sum_{p=0}^{\infty} \frac{1}{(2p)!} \frac{a^{2p}(2p)!}{p! 2^{p}} B_{n}^{p} = 32 \sum_{p=0}^{\infty} \frac{1}{p!} \left(\frac{1}{2}a^{2}B_{n}\right)^{p} = 32 \exp\left(\frac{1}{2}a^{2}B_{n}\right).$$

REMARK 2. As we can see in the proof of Theorem, the condition (4) may be replaced by the condition

$$B_n/P_n^2 = o(1/\log \log P_n),$$

but these two conditions (4) and (13) are equivalent to each other. In fact, (4) implies (13), for $B_n/P_n^2 \leq p_n P_n/P_n^2 = p_n/P_n$, and we shall show that (13) involves (4). For sufficiently large *n* we have $p_n/P_n < 1/4$, and as in the proof of Theorem we can find an integer m = m(n) > n such that $P_n < P_m \leq 2P_n$ and $P_{m+1} > 2P_n$. From these inequalities we have

$$\frac{p_n}{P_n} = \frac{p_n P_m}{P_n P_m} \leq \frac{p_n P_m}{P_n P_m} + \frac{p_{n+1}^2 + \dots + p_m^2}{P_n P_m} \leq \frac{p_n P_{m+1}}{P_n 2 P_m} + \frac{2B_m}{P_m^2}$$

and $P_{m+1}/P_m = P_{m+1}/(P_{m+1}-p_{m+1}) = 1/(1-p_{m+1}/P_{m+1}) < 4/3$, hence we have $p_n/P_n < (2/3)p_n/P_n + 2B_m/P_m^2$, that is,

$$p_n/P_n \leq 6B_m/P_m^2 = o(1/\log \log P_m) = o(1/\log \log P_n).$$

REMARK 3. We shall add a simple proof of the Hill theorem (iii). If $\varphi_n(x)$ converges in a set of positive measure, it does almost everywhere by (i); and if its limit is not essentially constant, we can find two disjoint sets P and Q of positive measure such that every limit of $\varphi_n(x)$ for $x \in P$ is greater than any limit for $x \in Q$. However, by the Steinhaus theorem ([5]), we can obtain two points $p \in P$ and $q \in Q$ whose distance is a dyadic rational; and for such points the limits of $\varphi_n(x)$ are clearly equal, which contradicts the above fact. Hence $\varphi_n(x)$ converges to a constant, c say, almost everywhere. And we can find a point t such that $\varphi_n(x)$ converges to c for both x = t and x = 1-t; then the evident relation $\varphi_n(t) =$ $-\varphi_n(1-t)$ shows that c = -c, that is, c = 0. Finally, we have, for almost all x, $|p_n/P_n| = |p_n r_n(x)/P_n| = |(S_n(x) - S_{n-1}(x))/P_n| \leq |S_n(x)/P_n| + |S_{n-1}(x)/P_n| \leq |\varphi_n(x)| + |\varphi_{n-1}(x)|$, which tends to zero, that is, $p_n/P_n \to 0$ as $n \to \infty$, q.e.d.

REMARK 4. If $\{p_n/P_n\}$ is a non-increasing sequence, the condition (2) implies $p_n/P_n = o(1/\log P_n)$ and a fortiori our condition (4). In fact, for $\varepsilon > 0$, we have for sufficiently large m and for any n > m,

$$\varepsilon > \sum_{k=m}^{n} (p_k/P_k)^2 \ge (p_n/P_n) \sum_{k=m}^{n} (p_k/P_k) \sim (p_n/P_n) \log P_n$$

as $n \rightarrow \infty$, in virtue of the well known Cesàro theorem. Hence in this case the Hill theorem (ii) is a consequence of ours.

References.

1) J. D. Hill: Summability of sequences of 0's and 1's, Ann. Math., 46; 4 (1945) 556-562.

No. 3.]

2) S. Kaczmarz and H. Steinhaus: Theorie der Orthogonalreihen, Warszawa-Lwów, 1935.

3) J. Marcinkiewicz and A. Zygmund: Remarque sur la loi du logarithme itéré, Fund. Math., **29** (1937) 215-222.

4) G. Maruyama: On a problem of Mr. Kakutani, Monthly of Real Analysis, 2; 9 (1949) (in Japanese).

5) H. Steinhaus: Sur les distances des points des ensembles de measure positive, Fund. Math., 1 (1920) 93-104.

6) T. Tsuchikura: On some divergent problems, Tôhoku Math. Jour., Ser. 2, vol. 2 (1950) 30-39.