30. Notes on Fourier Analysis (XL): Remark on the Rademacher System.

By Tamotsu Tsuchikura.
Mathematical Institute, Tôhoku University.
(Comm. by K. Kunugi, m.J.A., March 12, 1951.)

§ 1. Let $\left\{r_{n}(x)\right\}$ denote the Rademacher system, and let $\left\{p_{n}\right\}$ ($n=1,2, \ldots$) be an increasing sequence of positive numbers. If we denote $P_{n}=p_{1}+p_{n}+\cdots+p_{n}$ and

$$
\begin{equation*}
\varphi_{n_{2}}(x)=\left[p_{1} r_{1}(x)+p_{2} r_{2}(x)+\cdots+p_{n} r_{n}(x)\right] / P_{n} \tag{1}
\end{equation*}
$$

($n=1,2, \ldots$), the following theorems are known (J. D. Hill [1]) :
(i) The set of convergence points of $\varphi_{z}(x)$ is of measure 0 or 1^{11};
(ii) if the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(p_{n} / P_{n}\right)^{2} \tag{2}
\end{equation*}
$$

converges, then $\phi_{n}(x)$ converges to zero almost everywhere; and conversely (iii) if $\varphi_{n}(x)$ converges in a set of positive measure, its limit is necessarily zero almost everywhere, and moreover

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} p_{n} / P_{n n}=0 .{ }^{2}\right) \tag{3}
\end{equation*}
$$

Let us consider now the condition which implies the convergence almost everywhere of $\varphi_{2}(x)$. It is also known that the condition (3) is insufficient to assert such convergence (G. Maruyama [4] and the author [6]). In this note, by determining the decreasing order of (3), we shall give a sufficient condition different from the convergence of (2) ${ }^{3}$.

Theorem. If we have

$$
\begin{equation*}
p_{n} / P_{n}=o\left(1 / \log \log P_{n}\right) \quad \text { as } n \rightarrow \infty, \tag{4}
\end{equation*}
$$

then $\varphi_{v}(x)$ converges to zero almost everywhere.
The condition (4) is the best possible one of this form, in fact, there exists an increasing sequence of positive numbers $\left\{p_{n}\right\}$ such that $p_{n} / P_{n}=O\left(1 / \log \log P_{n}\right)$ as $n \rightarrow \infty$, and $\varphi_{n}(x)$ diverges almost everywhere. An example with this property was furnished by Mr.

[^0]G. Maruyama [4]: Let $p_{1}=1$ and $p_{n}=\exp (n / \log n) / \log n(n \geqq 2)^{4}$, then by easy calculation we have $P_{n} \sim \exp (n / \log n), \log \log P_{n} \sim \log n$ and $p_{n} / P_{n_{2}} \sim 1 / \log \log P_{n}$; and as he proved the divergence almost everywhere of $\phi_{v 2}(x)$ may be shown using the Kolmogoroff lemma on the law of the iterated logarithm.
\S 2. Proof of Theorem. As P_{n} tends to the infinity with n, we can choose an integer n_{1} such that
\[

$$
\begin{equation*}
P_{n_{1}}>1, \text { and } p_{n} / P_{n}<1 / 3 \text { for } n \geqq n_{1} \tag{5}
\end{equation*}
$$

\]

in virtue of (4). We shall define a sequence of integers $\left\{n_{k}\right\}$ by induction. If $n_{1}, n_{2}, \ldots, n_{k-1}$ are defined, we can find an integer n_{k} such that

$$
\begin{equation*}
P_{n_{k-1}}<P_{n_{k}} \leqq 2 P_{n_{k-1}} \text { and } P_{n_{k}+1}>2 P_{n_{k-1}} \tag{6}
\end{equation*}
$$

this possibility may be easily conceived from the relation:

$$
\begin{aligned}
P_{n_{k-1}+1} / P_{n_{k-1}} & =1+\left(p_{n_{k-1^{+}}} / P_{n_{k-1}}\right) /\left[1-\left(p_{n_{k-1}+1} / P_{n_{k-1}+1}\right)\right] \\
& <1+(1 / 3) /(1-1 / 3)<2 \quad(k \geq 2) .
\end{aligned}
$$

The sequence $\left\{n_{k}\right\}$ is thus defined. Let us put

$$
S_{n}(x)=p_{1} r_{1}(x)+\cdots+p_{n} r_{n}(x), S_{n}^{*}(x)=\max _{1 \leq m \Omega_{n}}\left|S_{m}(x)\right| \quad(n=1,2, \ldots)
$$

For a given $\delta>0$, denote by $E_{k}(k=1,2, \ldots)$ the set of all x such that $\left|S_{n}(x)\right|>\delta P_{n}$ for at least one value of $n, n_{k-1}<n \leqq n_{k}$, and put

$$
M_{k}=\underset{x}{\mathrm{E}}\left[\left|S_{n_{k}}^{*}(x)\right|>\delta P_{n_{k-1}}\right] \quad(k=2,3, \ldots)
$$

If the series $\sum_{k=1}^{\infty}\left|E_{k}\right|$ converges for every $\delta>0$, we may complete the proof in virtue of the well known Borel-Cantelli theorem, hence it is sufficient to prove the convergence of the series

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left|M_{k}\right| \tag{7}
\end{equation*}
$$

since $E_{k} \subset M_{k}(k=2,3, \ldots)$. From the Marcinkiewicz-Zygmund inequality"

$$
\begin{equation*}
\int_{0}^{1} \exp \left(a S_{n}^{* *}(x)\right) d x \leqq 32 \exp \left(\frac{1}{2} a^{2} B_{n}\right) \tag{8}
\end{equation*}
$$

where $a=a_{n}>0$ and $B_{n}=p_{1}^{2}+\cdots+p_{n i}^{2}(n=1,2, \ldots)$, we have

[^1]$$
\left|M_{k}\right| \exp \left(a \delta P_{n_{k-1}}\right) \leqq \int_{0}^{1} \exp \left(a S_{n_{k}}^{*}(x)\right) d x \leqq 32 \exp \left(\frac{1}{2} a^{2} B_{n_{k}}\right)
$$

Putting $a=\delta P_{n_{k-1}} / B_{n_{k}}$ we deduce easily that

$$
\begin{equation*}
\left|M_{k}\right| \leqq 32 \exp \left(-\frac{1}{2} \delta^{2} P_{n_{k-1}}^{2} / B_{n_{k}}\right) \quad(k=2,3, \ldots) \tag{9}
\end{equation*}
$$

On the other hand, by (6) we have

$$
\begin{equation*}
B_{n_{k}} / P_{n_{k-1}}^{2}=\left(p_{1}^{2}+\cdots+p_{n_{k}}^{2}\right) / P_{n_{k-1}}^{2} \leqq p_{n_{k}} P_{n_{k}} /\left(P_{n_{k}} / 2\right)^{2}=4 p_{n_{v_{k}}} / P_{n_{k}} \tag{10}
\end{equation*}
$$

and from (4) we have

$$
\begin{equation*}
p_{n_{k_{k}}} / P_{n_{k}} \leqq \frac{\delta^{2}}{16}\left(1 / \log \log P_{n_{k}}\right) \tag{11}
\end{equation*}
$$

for large k, From (5) and (6) we obtain that

$$
\begin{align*}
P_{n_{k}} & =P_{n_{k^{+1}}}-p_{n_{k^{+}}+1} \geqq \frac{2}{3} P_{n_{k^{+1}}}>\frac{4}{3} P_{n_{k-1}} \tag{12}\\
& >\cdots>(4 / 3)^{k-1} P_{n_{1}}>(4 / 3)^{k-1} \quad(k=1,2, \ldots) .
\end{align*}
$$

Combining (10), (11), (12) and (9) we deduce easily that

$$
\left|M_{k}\right| \leqq 32 \exp \left(-2 \log \log (4 / 3)^{k-1}\right)=32 /[(k-1) \log (4 / 3)]^{2}
$$

for large k, and the convergance of (7) is proved, q.e.d.
§3. Remark 1. The inequality (8) is essentially included in [3], but for the sake of completeness we shall prove it here. From the inequality ([3], Lem. 2)

$$
\int_{0}^{1} \exp \left(a S_{n}^{*}(x)\right) d x \leqq 16 \int_{0}^{1} \exp \left(a\left|S_{n}(x)\right|\right) d x \quad(a>0)
$$

and the Khintchine inequality (see for example, [2], proof of [456] p. 131)

$$
\int_{0}^{1}\left|S_{n 0}(x)\right|^{2 p} d x \leqq \frac{(2 p)!}{p!2^{p}} B_{n n}^{p} \quad(p=1,2, \ldots)
$$

we deduce easily that

$$
\begin{aligned}
& \int_{0}^{1} \exp \left(a S_{n}^{*}(x)\right) d x \leqq 32 \int_{0}^{1} \cosh \left(a\left|S_{n}(x)\right|\right) d x=32 \sum_{p=0}^{\infty} \frac{1}{(2 p)!} \int_{0}^{1} a_{0}^{2 p}\left|S_{n}(x)\right|^{s p} d x \\
& \quad \leqq 32 \sum_{p=0}^{\infty} \frac{1}{(2 p)!} \frac{a^{2 p}(2 p)!}{p!2^{p}} B_{n}^{p}=32 \sum_{p=0}^{\infty} \frac{1}{p!}\left(\frac{1}{2} a^{2} B_{n}\right)^{p}=32 \exp \left(\frac{1}{2} a^{2} B_{n n}\right)
\end{aligned}
$$

Remark 2. As we can see in the proof of Theorem, the condition (4) may be replaced by the condition

$$
\begin{equation*}
B_{v /} / P_{n}^{2}=o\left(1 / \log \log P_{n}\right) \tag{13}
\end{equation*}
$$

but these two conditions (4) and (13) are equivalent to each other. In fact, (4) implies (13), for $B_{n} / P_{n}^{2} \leqq p_{n} P_{n} / P_{n}^{2}=p_{n} / P_{n}$, and we shall show that (13) involves (4). For sufficiently large n we have $p_{a z} / P_{n z}<1 / 4$, and as in the proof of Theorem we can find an integer $m=m(n)>n$ such that $P_{n}<P_{m} \leqq 2 P_{n}$ and $P_{m+1}>2 P_{n}$. From these inequalities we have

$$
\frac{p_{n}}{P_{n}}=\frac{p_{n} P_{m}}{P_{n} P_{m}} \leqq \frac{p_{n} P_{m}}{P_{n} P_{m}}+\frac{p_{n+1}^{2}+\cdots+p_{m}^{2}}{P_{n} P_{m}} \leqq \frac{p_{n} P_{m+1}}{P_{n} 2 P_{m}}+\frac{2 B_{m}}{P_{m}^{2}}
$$

and $P_{m+1} / P_{m}=P_{m+1} /\left(P_{m+1}-p_{m+1}\right)=1 /\left(1-p_{m+1} / P_{m+1}\right)<4 / 3$, hence we have $p_{n} / P_{n}<(2 / 3) p_{n} / P_{n}+2 B_{m} / P_{m}^{2}$, that is,

$$
p_{n} / P_{n} \leqq 6 B_{m} / P_{m}^{2}=o\left(1 / \log \log P_{m}\right)=o\left(1 / \log \log P_{n}\right)
$$

Remark 3. We shall add a simple proof of the Hill theorem (iii). If $\boldsymbol{\varphi}_{n}(x)$ converges in a set of positive measure, it does almost everywhere by (i); and if its limit is not essentially constant, we can find two disjoint sets P and Q of positive measure such that every limit of $\phi_{n}(x)$ for $x \in P$ is greater than any limit for $x \in Q$. However, by the Steinhaus theorem ([5]), we can obtain two points $p \in P$ and $q \in Q$ whose distance is a dyadic rational; and for such points the limits of $\varphi_{x}(x)$ are clearly equal, which contradicts the above fact. Hence $\varphi_{n}(x)$ converges to a constant, c say, almost everywhere. And we can find a point t such that $\varphi_{x}(x)$ converges to c for both $x=t$ and $x=1-t$; then the evident relation $\phi_{n}(t)=$ $-\varphi_{r 2}(1-t)$ shows that $c=-c$, that is, $c=0$. Finally, we have, for almost all $x,\left|p_{n}\right| P_{n 2}\left|=\left|p_{n} r_{n n}(x) / P_{n}\right|=\left|\left(S_{n}(x)-S_{n-2}(x)\right) / P_{n}\right| \leq\left|S_{n}(x)\right|\right.$ $P_{n}\left|+\left|S_{n-1}(x) / P_{n}\right| \leqq\left|\varphi_{n}(x)\right|+\left|\varphi_{n-1}(x)\right|\right.$, which tends to zero, that is, $p_{n} / P_{n} \rightarrow 0$ as $n \rightarrow \infty$, q.e.d.

Remark 4. If $\left\{p_{n} / P_{n}\right\}$ is a non-increasing sequence, the condition (2) implies $p_{n} / P_{n}=o\left(1 / \log P_{n}\right)$ and a fortiori our condition (4). In fact, for $\varepsilon>0$, we have for sufficiently large m and for any $n>m$,

$$
\varepsilon>\sum_{k=m}^{n}\left(p_{k} / P_{k}\right)^{2} \geqq\left(p_{n} / P_{n}\right) \sum_{k=m}^{n}\left(p_{k} / P_{k}\right) \sim\left(p_{n} / P_{n}\right) \log P_{n}
$$

as $n \rightarrow \infty$, in virtue of the well known Cesàro theorem. Hence in this case the Hill theorem (ii) is a consequence of ours.

References.

[^2]2) S. Kaczmarz and H. Steinhaus : Theorie der Orthogonalreihen, WarszawaLwów, 1935.
3) J. Marcinkiewicz and A. Zygmund: Remarque sur la loi du logarithme itéré, Fund. Math., 29 (1937) 215-222.
4) G. Maruyama : On a problem of Mr. Kakutani, Monthly of Real Analysis, 2; 9 (1949) (in Japanese).
5) H. Steinhaus: Sur les distances des points des ensembles de measure positive, Fund. Math., 1 (1920) 93-104.
6) T. Tsuchikura : On some divergent problems, Tôhoku Math. Jour., Ser. 2, vol. 2 (1950) 30-39.

[^0]: 1) We shall understand, throughout this paper, that the sets are included in $(0,1)$, that is, $0<x<1$.
 2) Cf. Remark 3 , $\S 3$.
 3) Cf. Remark $4, \S 3$.
[^1]: 4) This definition is different from his in its form, but for our purpose these two are essentially the same.
 5) Cf. Remark 1, $\S 3$.
[^2]: 1) J. D. Hill: Summability of sequences of 0 's and 1's, Ann. Math., 46; 4 (1945) 556-562.
