29. On a Topological Method in Semi-Ordered Linear Spaces.

By Ichiro AMEMIYA.

(Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

In Banach spaces, we always obtain a continuous linear functional as the limit of a weakly converging sequence of continuous linear functionals. And this property is based on a fact that a complete metric space is of second category. In continuous semiordered linear spaces, bounded (continuous or universally continuous) linear functionals have the same property¹⁾. To investigate the relation of these two cases, first in §1 we will define a kind of topology in abstract spaces by which we obtain a topological space having the property akin to that of second category one under some condition. In §2 applying it to semi-ordered linear spaces we will show that we can discuss the problem mentioned above by the topological method.

We shall make use of notations in the books of H. Nakano^{s)}.

§1. Cell-topology.

Let R be an abstract space. For a family \mathfrak{L} of subsets of Rwe denote by $\overline{\mathfrak{L}}$ the least totally aditive family including \mathfrak{L} and the null set 0, and by \mathfrak{T} the family of all the set X such that $C \in \overline{\mathfrak{L}}$ implies $XC \in \overline{\mathfrak{L}}$. Then we can see easily that \mathfrak{T} satisfies the topological conditions³) and hence we obtain a topology in R by which the family of all the open sets coincides with \mathfrak{T} . For brevity we will call it the topology by a *cell-system* \mathfrak{L} and a set belonging in \mathfrak{L} a *cell*. If \mathfrak{L} satisfies the following condition:

(1) $\mathfrak{L} \ni C_{\nu} (\nu = 1, 2...) C_1 > C_2 > \cdots$, implies $\prod_{\nu=1}^{\infty} C_{\nu} \neq 0$,

then a cell system 2 is said to be complete.

Let R be a topological space by a complete cell-system \mathfrak{L} in the sequel. Then R has the following important property:

Theorem 1.1. For the sequence of closed sets B_{ν} ($\nu = 1, 2, ...$), if every B_{ν} includes no cells, then the union $\sum_{\nu=1}^{\infty} B_{\nu}$ also includes no cells.

Proof. If $\sum_{\nu=1}^{\infty} B_{\nu} > C \in \mathfrak{L}$ then there exist $C_{\nu} \in \mathfrak{L}$ ($\nu = 1, 2, ...$) such that $B'_{1}C > C$, $B'_{2}C_{1} > C_{2}...B'_{\nu}C_{\nu-1} > C_{\nu}...$ because B'_{ν} is open and $\mathfrak{L} \ni B'_{\nu} C_{\nu-1} \neq 0$. Therefore by (1) we obtain that $0 \neq C \prod_{\nu=1}^{m} C_{\nu} < C \prod_{\nu=1}^{m} B'_{\nu} = C (\sum_{\nu=1}^{\infty} B_{\nu})'$ and come to the contradiction.

No. 3] On a Topological Method in Semi-Ordered Linear Spaces.

For continuous functions on R we obtain by this theorem the following two theorems:

Theorem 1.2. For a system of continuous functions $f_{\lambda}(\lambda \in \Lambda)$, if we have $\sup_{\lambda \in \Lambda} |f_{\lambda}(x)| < +\infty$ for every $x \in R$ then $f_{\lambda}(\lambda \in \Lambda)$ are uniformly bounded in some cell.

Proof. Putting $B_{\nu} = \{x : \sup_{\lambda} | f_{\lambda}(x) | \leq \nu\}$ for every $\nu = 1, 2, \ldots$ we have a sequence of closed sets B_{ν} and $\sum_{\nu=1}^{\infty} B_{\nu} = R$, then by the previous theorem B_{ν} includes a cell for some ν .

Theorem 1.3. For a sequence of continuous functions $f_{\nu}(\nu = 1, 2,...)$ if there exists the limit $\lim_{\nu \to \infty} f_{\nu}(x)$ for every $x \in R$, then for every real number $\varepsilon > 0$ there exists the cell C and number ν such that for every $x \in C$ and numbers $\mu, \rho \geq \nu$ we have $|f_{\mu}(x) - f_{\rho}(x)| \leq \varepsilon$.

Proof. Putting $B_{\nu} = \{x : \sup_{\mu, \rho \geq \nu} |f_{\mu}(x) - f_{\rho}(x)| \leq \varepsilon\}$ for every $\nu = 1$, 2, ..., we can prove the theorem similarly.

 $\S 2$. Application to semi-ordered linear spaces.

Let R be a semi-ordered linear space. A set of positive elements A will be called an *ideal* if the conditions: 1) $A \ge 0$ 2) $a \in A$, $b \ge a$ implies $b \in A$ 3) a, $b \in A$ implies $a \frown b \in A$ are satisfied. Taking as the cell-system, all the set of elements [a, b] $= \{x : a \le x \le b\}$ for $b-a \in A$, we obtain a topology in R. We will denote by R_A the topological space thus obtained. We can prove easily that this cell-system is complete for every ideal A if R is continuous.

In R_A for the continuity of linear functionals we obtain the following theorem:

Theorem 2.1. In order that a linear functional L of R is continuous in R_A , it is necessary and sufficient that for every real number $\varepsilon > 0$ there exists an element $a \in A$ such that we have $|L(x)| < \varepsilon$ for every $0 \le x \le a$.

Proof. If L is continuous then $\{x : |L(x)| \leq \varepsilon\}$ is open and contains 0, and hence includes some cell C = [0, a].

Conversely if L satisfies the condition of the theorem, then for any real number α the set $X = \{x : L(x) > \alpha\}$ is open in R_A , because for any element y and any cell C such that $y \in CX$ namely $L(y) > \alpha + 2\varepsilon$ for some real number $\varepsilon > 0$ and C = [y-b, y+c]for $b+c \in A$, if $|L(x)| < \varepsilon$ for $0 \le x \le a$, then since $a \frown b+a \frown c$ $\ge a \frown (b+c) \in A$ putting $C_1 = [y-a \frown b, y+a \frown c]$ we obtain a cell C^1 such that $y \in C_1 \subset C$, and for any element $z \in C_1$ since $|y-z| \le a$ we have $L(z) = L(y) + L(z-y) > \alpha + 2\varepsilon - 2\varepsilon = \alpha$ namely $z \in X$. For the set $\{x : L(x) \le \alpha\}$ we can prove similarly that it is open.

We will say that an ideal A is a simple ideal, if A contains

an element a such that A is the least ideal that includes αa for all real number α , and A is a σ -ideal if there exists a sequence $a_{\nu} \in R \ (\nu = 1, 2, ...)$ such that $a_{\nu} \downarrow_{\nu=1}^{\infty} 0$ and A is the least ideal that includes this sequence. Then a simple ideal is a σ -ideal, and by the previous theorem we can see easily that in order that a linear functional L is bounded (or continuous, universally continuous) it is necessary and sufficient that L is continuous in R_A for every simple ideal A (or every σ -ideal A, every ideal A such that the meet $\wedge A$ is 0)⁴⁾ and hence our question can be reduced to that of continuous linear functionals on R_A , and for it applying the theorem 1.2 and 1.3 with some variation on account of the linearity we can obtain immediately:

Theorem 2.2. If R is continuous and for a system of continuous linear functionals $L_{\lambda}(\lambda \in \Lambda)$ on R_{A} if we have $\sup_{\lambda \in \Lambda} |L_{\lambda}(x)| < +\infty$ for every $x \in R$, then there exists an element $a \in A$ such that

$$\sup_{0\leq x\leq a} \sup_{\lambda\in A} |L_{\lambda}(x)| < +\infty$$

Theorem 2.3. If R is continuous and for a sequence of continuous linear functionals L_{ν} ($\nu = 1, 2, ...$) on R_A if we have the limit $L(x) = \lim_{\nu \leftarrow \infty} L_{\nu}(x)$ for every $x \in R$, then for every real number $\varepsilon > 0$ there exists an element $a \in A$ such that we have $\sup_{0 \le x \le a} |L_{\nu}(x)| \le \varepsilon$ for every $\nu = 1, 2, ...$ and hence L(x) is also continuous on R_A .

References.

1) H. Nakano: Modulared semi-ordered linear spaces, theorem 18.4 and 19.6.

2) [1] H. Nakano: Modulared semi-ordered linear spaces, Tokyo mathematical book series, Vol. I (1950).

[2] H. Nakano: Modern spectral theory, Tokyo mathematical book series, Vol. II (1950).

3) [2] P. 2.

4) [1] § 18, 19, and 22.