61. On the Equi-Continuity in Semi-Ordered Linear Spaces.

By Ichiro AMEMIYA.

(Comm. by K. KUNUGI, M.J.A., June 12, 1951.)

Let a semi-ordered linear space R be universally continuous and semi-regular. The equi-continuity and universally equi-continuity are defined for a system of elements of R by H. Nakano in a book¹, and it was proved in it that these concepts become equivalent for a system of countable elements. We will prove in this paper that this equivalency holds for every system. In the sequel we shall employ notations in the book cited above.

Let \overline{R} be the conjugate space of R. For a manifold K of Rwe define a functional μ_{κ} on \overline{R} such that $\mu_{\kappa}(\overline{a}) = \sup_{x \in \overline{K}} |\overline{a}| (|x|)$ for every $\overline{a} \in \overline{R}$, then we can see easily that we have for every \overline{a} , $\overline{b} \in \overline{R}$

- 1) $0 \leq \mu_{K}(\bar{a}) \leq +\infty$,
- 2) $|\bar{a}| \leq |\bar{b}|$ implies $\mu_{\kappa}(\bar{a}) \leq \mu_{\kappa}(\bar{b})$,
- 3) $\mu_{\kappa}(\alpha \bar{a}) = |\alpha| \mu_{\kappa}(\bar{a})$ for every real number α ,
- 4) $\mu_{\kappa}(\bar{a}+\bar{b}) \leq \mu_{\kappa}(\bar{a}) + \mu_{\kappa}(\bar{b})$.

If we denote by \overline{M}_{κ} the set of all elements \overline{a} of \overline{R} such that $\mu_{\kappa}(\overline{a}) < +\infty$, then \overline{M}_{κ} is a semi-normal manifold of \overline{R} and the functional μ_{κ} is a norm on $\overline{M}_{\kappa}[K]$ because if $\overline{a} \in \overline{M}_{\kappa}[K]$ and $\mu_{\kappa}(\overline{a}) = 0$, then since $|\overline{a}| (|x|) = 0$ for every $x \in K$, we have $|\overline{a}| = |\overline{a}| [K] = 0$.

If K is weakly bounded, then \overline{M}_{κ} coincides with \overline{R} and μ_{κ} is a norm on the normal manifold $\overline{R}[K]$, and if K is moreover equicontinuous, then this norm on $\overline{R}[K]$ is obviously a continuous norm. Since a continuous semi-ordered linear space having a continuous norm is superuniversally continuous², we obtain the following theorem:

Theorem. If a manifold K of R is equi-continuous, then $\overline{R}[K]$ is superuniversally continuous and for any $\overline{a}_{\lambda} \downarrow_{\lambda \in A} 0$, $\overline{a}_{\lambda} \in \overline{R}$ and real number $\varepsilon > 0$ there exists $\lambda_0 \in \Lambda$ for which we have $\overline{a}_{\lambda_0}(|x|) \leq \varepsilon$ for every $x \in K$.

¹⁾ H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo Mathematical Book Series vol. I (1950) p. 109.

²⁾ The book cited above, theorem 30. 7.