60. Theorems on the Cluster Sets of PseudoAnalytic Functions.

By Tokunosuke Yosida.
Kyoto Technical University.
(Comm. by K. Kunugi, m.J.A., June 12, 1951.)

Let D be a domain on the z-plane and C be its boundary. Let E be a bounded closed set of capacity ${ }^{1}$ zero, included in C and z_{0} be a point in E. Let $w=f(z)$ be a single-valued function pseudoanalytic in D. The cluster set $S_{z_{0}}^{(D)}$ is the set of all values α such that $\alpha=\lim _{n \rightarrow \infty} f\left(z_{n}\right)$, where $z_{n}(n=1,2, \ldots)$ is a sequence of points tending to z_{0} inside D. The cluster set $S_{z_{0}}^{*(C)}$ is the intersection of the closure of the union $U S_{z^{\prime}}^{(D)}$ for all z^{\prime} belonging to the part of $C-E$, which lies in $\left|z-z_{0}\right|<r$.

Since E is of capacity zero, by Evan's theorem², we can distribute a positive measure $d \mu(\alpha)$ on E such that its potential

$$
u(z)=\int_{E} \log \frac{1}{|z-a|} d \mu(a), \quad \int_{E} d \mu(a)=1
$$

is harmonic outside E, excluding $z=\infty$, and has boundary value $+\infty$ at any point of E. Let $v(z)$ be its conjugate harmonic function and put

$$
\zeta=\zeta(z)=e^{u(z)+i v(z)}=r(z) e^{i v(z)}=r e^{i \theta} .
$$

The niveau curve $C_{r}: r(z)=$ const. $=r(0<r<+\infty)$ consists of a finite number of Jordan curves surrounding E. Let J_{r} be its component which surrounds z_{0}. Let V_{r} be the closure of the set of all values taken by $f(z)$ in the part of D, which lies in the interior of J_{r}. Then $S_{\varepsilon_{0}}^{(D)}$ is identical with the intersection of all V_{r}. Let M_{r} be the closure of the union $U S_{z^{\prime}}^{(D)}$ for all z^{\prime} belonging to the part of $C-E$, which lies in the interior of J_{r}. Then $S_{z_{0}}^{*(9)}$ is identical with the intersection of all M_{r}. Let (P) denote the class of functions $w=f(z)$ which are single-valued and pseudoanalytic in D and for which the integral

$$
\begin{equation*}
\int^{\infty} \frac{d r}{r D(r)} \tag{1}
\end{equation*}
$$

diverges, where $D(r)$ is the smallest upper bound of the ' Dilatationsquotient's) $D_{\varepsilon \mid w}$ of $w=f(z)$ on the part of C_{r} which lies in D.

1) 'Capacity' means logarithmic capacity in this paper.
2) G. C. Evans: Monatshefte f. Math. u. Phys. 43 (1936).
3) O. Teichmüller: Deutsche Math. 3 (1938).

Let G be a domain on the w-plane bounded by a Jordan curve Γ and a bounded closed set F. We introduce a Riemannian metric ${ }^{4}$

$$
\begin{equation*}
d s=\lambda(w)|d w| \tag{2}
\end{equation*}
$$

on G, where $\lambda(w)$ is a non-negative, continuous function in G such that the metric gives G a finite area.

Lemma 1. Let $w=f(z)$ be a function of (P) and Δ be a subdomain of D such that its boundary does not contain any point of $C-E$ and any value taken by $f(z)$ in Δ lies in G. Let $A(r)$ be the area of the Riemannian image of the part of 4 , which lies between C_{r} and $C_{r_{0}}$ and $L(r)$ be the length of the image of the part of C_{r}, which lies in 4 . Then we have

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{L(r)}{A(r)}=0 \tag{3}
\end{equation*}
$$

Proof. Let C_{r}^{\prime} be the part of C_{r}, which lies in Δ and θ_{r} be its image on the ζ-plane by $\zeta=\zeta(z)$. Let $z=z(\zeta)$ be the inverse function of $\zeta=\zeta(z)$ and put $w(\zeta)=f(z(\zeta))$. If we denote the differential coefficient of $w(\zeta)$ along θ_{r} by w^{\prime}, then we have

$$
L(r)=\int_{\theta_{r}} \lambda(w(\zeta))\left|w^{\prime}\right| r d \theta
$$

Hence, by the inequality of Schwarz, we have

$$
(L(r))^{2} \leqq \int_{\theta_{r}} r d \theta \int_{\theta_{r}} \lambda^{3}\left|w^{\prime}\right|^{2} r d \theta \leqq 2 \pi r \int_{\theta_{r}} \lambda^{2}\left|w^{\prime}\right|^{2} r d \theta .
$$

Since $D_{z \mid w}=D_{\zeta \mid w}$, we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{r_{1}}^{r} \frac{(L(r))^{2}}{r D(r)} d r \leqq \int_{r_{1}}^{r} \int_{\theta_{r}} \frac{\lambda^{2}\left|w^{\prime}\right|^{2}}{D(r)} r d r d \theta \leqq A(r)-A\left(r_{1}\right), \tag{4}
\end{equation*}
$$

where $r>r_{1}$. Letting $r_{1} \rightarrow r$, we have

$$
\frac{d r}{2 \pi r D(r)} \leqq \frac{d A(r)}{(L(r))^{2}}
$$

Let J_{r} be the set of all values r such that $L(r)>r^{/} \overline{A(r)} \log A(r)$, then we have

$$
\frac{1}{2 \pi} \int_{\Delta_{r}} \frac{d r}{r D(r)} \leqq \int_{\Delta_{r}} \frac{d A(r)}{(L(r))^{2}} \leqq \int_{A\left(r_{0}\right)}^{\infty} \frac{d t}{t(\log t)^{2}}<+\infty
$$

4) L. Ahlfors: Acta Soc. Sci. Fenn. N. s. 2 (1937).

Since the integral (1) diverges, we have (3) in the case when $A(r)$ is not bounded. If $A(r)$ is bounded, then we have $\lim _{r \rightarrow+\infty} L(r)=0$ by (4), so that we have (3).

Lemma 2. If the set F is of capacity positive, then there exists a metric (2) which gives F a positive length. Suppose further that F is not covered by the closure of a finite covering surface W of G. If we denote the area and the length of the relative boundary of W by A and L respectively, then we have $A \leqq h L$, where h is a positive constant.

Proof. Since F is a set of capacity positive, we can distribute a positive measure $d \mu(a)$ on F such that its potential

$$
\xi(w)=\int_{F} \log \frac{1}{|w-a|} d \mu(a), \quad \int_{F} d \mu(a)=1
$$

is harmonic in the complementary domain $G(F)$ of F, which contains G, excluding $w=\infty$, and has boundary values not greater than the Robin's constant γ of $G(F)^{5}$. Let $\eta(w)$ be its conjugate harmonic fnnction and put $\omega=\omega(w)=\exp \{\xi(w)+i \eta(w)\}$. The functions $|\omega(w)|$ and $\left|\omega^{\prime}(w)\right|$ are single-valued. Let β be a Jordan curve or a finite number of Jordan curves surrounding F, then we have

$$
\int_{\beta} d \eta(w)=2 \pi \int_{F^{\prime}} d \mu(\alpha)=2 \pi
$$

Hence we can put $\lambda(w)=\left|\omega^{\prime}(w)\right| /\left(1+|\omega(w)|^{2}\right)$ in (2). The area of G is not greater than π. Since $\xi(w) \leqq \gamma$ in G, the length of F is positive. Hence, by Ahlfors' theory of covering surfaces ${ }^{\text { }}$, we have $A \leqq h L$.

Lemma 3. If a function $w=f(z)$ of (P) is bounded in D and

$$
\begin{equation*}
\varlimsup_{z \rightarrow z^{\prime}}|f(z)| \leqq M \tag{5}
\end{equation*}
$$

for every point z^{\prime} of $C-E$, then $|f(z)| \leqq M$ in D.
Proof. We suppose, contrary to the assertion, that there exists a point z_{1} in D such that $\left|f\left(z_{1}\right)\right|>M$. Since $f(z)$ is bounded, there exists a constant K such that $|f(z)|<K$ in D. We have $K>M$. Let M_{1} be a constant such that $\left|f\left(z_{1}\right)\right|>M_{1}>M$. We choose the domain G such that Γ is the circle $|w|=M_{1}$ and F is a bounded closed set of capacity positive lying outside the circle $|w|=K+1$. Then there exists a metric of Lemma 2. Let \lrcorner be
5) R. Nevanlinna: Eindeutige analytische Funktionen (1936).
6) L. Ahlfors: Acta Math. 65 (1935).
the set of all points z in D such that $w=f(z)$ lies in G. Since $f\left(z_{1}\right)$ lies in G, Δ is not empty. The boundary of Δ does not contains any point of $C-E$ by (5). Let r_{0} be a number such that z_{1} lies in the interior of the niveau curve $C_{r_{0}}$. Let $A(r)$ be the area of the Riemannian image W_{r} of the part of Δ, which lies between C_{r} and $C_{r_{0}}$ and $L(r)$ be the length of the image of the part of C_{r}, which lies in Δ, respectively by $w=f(z)$. Since the closure of W_{r} does not cover F, by Lemma 2, we have

$$
A(r) \leqq h\left(L(r)+L\left(r_{0}\right)\right)
$$

where h is a positive constant. Hence, by Lemma $1, A(r)$ is bounded.

Let M_{2} be a constant such that $\left|f\left(z_{1}\right)\right|>M_{2}>M_{1}$. We denote the circle $|w|=M_{2}$ by Γ^{\prime}, the domain bounded by Γ^{\prime} and F by G^{\prime} and the set of all points z in D such that $w=f(z)$ lies in G^{\prime} by Δ^{\prime}. If the closure of Δ^{\prime} is contained in D, then the Riemannian image of Δ^{\prime} by $w=f(z)$ is a finite covering surface of G^{\prime}, which has not relative boundary. Since the closure of this covering surface does not cover F, we arrive at a contradiction by Lemma 2, so that Δ^{\prime} contains at least a point of E on its boundary. Hence C_{r} meets the boundaries of J and J^{\prime} for a sufficiently large r, so that we have $\lim _{r \rightarrow+\infty} L(r)>0$. Hence, by Lemma $1, A(r)$ is not bounded, which is a contradiction. Therefore $|f(z)| \leqq M$ in D.

Theorem 1. If $w=f(z)$ is a function which belongs to the class (P), then $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is an open set. Suppose further that Ω is not empty, then $w=f(z)$ takes every values in Ω, except those belonging to a set of capacity zero, infinitely often in any neighbourhood of z_{0}.

Proof. We choose the domain G bounded by a Jordan curve Γ and a closed set F such that its closure and $S_{z_{0}}^{*(C)}$ have no point in common and $S_{z_{0}}^{(D)}$ and G have at least a point in common. Since M_{r} is the closure of the union $U S_{z}^{(P)}$ for all z^{\prime} belonging to the part of $C-E$, which lies in the interior of J_{r}, there is a number r_{0} such that M_{r} and the closure of G have not any point in common for every $r \geqq r_{0}$. Let $D(G)$ be the set of all points z in D such that $w=f(z)$ lies in G. Then the boundary of $D(G)$ does not contain any point of $C-E$, which lies in the interior of $J_{r_{0}}$. Let w_{0} be a point of $S_{z_{0}}^{(D)}$ contained in G. Then there exists a sequence of points $z_{n}(n=1,2, \ldots)$ tending to z_{0} inside D such that $w_{0}=\lim _{n \rightarrow \infty} f\left(z_{n}\right)$. We denote the component of $D(G)$, which contains z_{n} by d_{n}.
7) L. Ahlfors: Loc. cit. 6).

If there exists a component Δ_{k} which contains infinitely many points z_{n}, then z_{0} is a boundary point of d_{k}. In this case, we denote the part of J_{k}, which lies in the interior of $J_{r_{0}}$ by Δ. If such a component does not exist, then the sequence $\left\{J_{n}\right\}$ contains infinitely many distinct components. Since the curve J_{r} does not meet infinitely many distinct components Δ_{n} for every $r \geqq r_{0}, \Delta_{n}$ is contained in the interior of J_{r} for a sufficiently large n, that is, the sequence $\left\{\Delta_{n}\right\}$ tends to z_{0}. In this case we denote the union of all $J_{i n}$ which lie in the interior of $J_{r_{0}}$ by Δ. Let $\Delta(r)$ be the part of Δ, which lies outside of C_{r} and W_{r} be its Riemannian image by $w=f(z)$. Let $A(r)$ be the area of W_{r} and $L(r)$ be the length of the image of the part of C_{r}, which lies in Δ. Then we have the same relation as (3) of Lemma 1.

Let G^{\prime} be a subdomain of G, which contains w_{0} and whose closure lies in G and Δ^{\prime} be the set of all points z in Δ such that $w=f(z)$ lies in G^{\prime}. If Δ^{\prime} contains a sequence of components tending to z_{0}, then the closure of the set of all values taken by $f(z)$ in a component of J^{\prime} is identical with the closure of G^{\prime} by Lemma 3, so that $A(r)$ is not bounded. If d^{\prime} contains a component which has z_{0} on its boundary, then C_{r} meets the boundaries of Δ and Δ^{\prime} for a sufficiently large r, so that $\lim L(r)>0$. Hence $A(r)$ is not bounded. Therefore we have $i_{i n}^{r \rightarrow+\infty}$ all cases $\lim _{r \rightarrow+\infty} A(r)=+\infty$.

If we suppose, contrary to the assertion, that Ω is not an open set. Then we can choose the domain G such that F is a bounded closed set of capacity positive lying outside $S_{z_{0}}^{(D)}$. Since V_{r} is the closure of the set of all values taken by $f(z)$ in the part of D, which lies in the interior of J_{r}, there is a number r_{1} such that V_{r} and F have not any point in common for every $r \geqq r_{1}$. We can choose r_{0} such that $r_{0}>r_{1}$. Then, by Lemma 2, there is a metric and a positive constant h such that

$$
A(r) \leqq h\left(L(r)+L\left(r_{0}\right)\right)
$$

Hence we have

$$
\frac{1}{h} \leqq \lim _{r \rightarrow+\infty} \frac{L(r)+L\left(r_{0}\right)}{A r)}=0
$$

which is a contradiction, so that Ω is an open set.
Let Ω_{n} be a component of Ω and F_{n} be the set of all values in Ω_{n}, which is ommitted by $f(z)$ in a neighbourhood of z_{0}. We choose the domain G such that its closure is contained in Ω_{n} and F is identical with $F_{n 2}$. Let r_{1} be a number so large that J_{r} lies
in this neighbourhood of z_{0} for every $r \geqq r_{1}$. If we suppose that F_{n} is a set of capacity positive, then, by the same reason as above, we arrive at a contradiction. Hence F_{n} is a set of capacity zero, so that, by the well known method, we can prove that the set of exceptional values is of capacity zero.

Theorem 2. If the set E is contained in a finite number of connected components of the boundary \mathcal{C} and Ω is not empty, then $w=f(z)$ takes every values, with two possible exceptions, belonging to any connected component Ω_{n} of Ω infinitely often in any neighbourhood of z_{0}.

Proof. We suppose, contrary to the assertion, that there are three exceptional values in $\Omega_{n 2}$ and denote the set of these values by F. Then there is a number r_{1} such that $f(z)$ does not take any value of F in the part of D, which lies in the interior of $J_{r_{1}}$. We choose the domain G bounded by F and a Jordan curve Γ such that its closure is contained in Ω_{n}. Then there is a number r_{z} such that M_{r} and the closure of G have not any point in common for every $r \geqq r_{2}$. We put $r_{0}=\operatorname{Max}\left(r_{1}, r_{2}\right)$ and use the proof of Theorem 1.

Let I be the area of G and put $A(r)=I S(r)$. When $\Delta(r)$ is a single domain, we denote its characteristic number by η and put $\eta^{+}=\operatorname{Max}(O, \eta)$. When $J(r)$ consists of a finite number of connected components, we denote the sum of such numbers for every components by the same notation η^{+}. Since F consists of three points, we have by the fundamental theorem of Ahlfors ${ }^{7}$

$$
\begin{equation*}
\eta^{+} \geqq 2 S(r)-h\left(L(r)+L\left(r_{0}\right)\right), \tag{6}
\end{equation*}
$$

where h is a positive constant.
Let $m(r)$ be the number of Jordan curves contained in the boundary of $J(r)$, whose images by $w=f(z)$ lie on Γ. Then, by a method of Kunugi ${ }^{8}$, we have

$$
\begin{equation*}
m(r) \leqq S(r)+h^{\prime}\left(L(r)+L\left(r_{0}\right)\right) \tag{7}
\end{equation*}
$$

where h^{\prime} is a positive constant. Let $n(r)$ be the number of connected components of the union of C and the closures of the domains bounded by C_{r}, which contain a point of E. Then $n(r)$ is bounded and $\eta^{+} \leqq m(r)+n(r)$, so that we have from (6) and (7)

$$
1 \leqq\left(h+h^{\prime}\right) \frac{L(r)+L\left(r_{0}\right)}{S(r)}+\frac{n(r)}{S(r)}
$$

Since $A(r)=I S(r)$ is not bounded, we arrive at a contradiction by (3).
8) K. Kunugi: Proc. 16 (1940), Jap. Jour. of Math. 18 (1942).

Remark 1. Lemma 3 is an extension of a theorem which we have proved recently ${ }^{9}$. Theorem 1 is an extension of a theorem of Tsuji ${ }^{10}$. Theorem 2 contains the case when E consists of a single point and the case when D is simply connected, so that it is an extension of a theorem of Kunugi ${ }^{11)}$ and that of Noshiro ${ }^{12)}$.

Remark 2. Let $D(r)$ be a continuous function such that $D(r) \geqq 1$ for every $r \geqq r_{0}$. Then the function $w=f(z):$

$$
f(z)=e^{\zeta}, \zeta=\exp \left\{\int_{r_{0}}^{r} \frac{d r}{r D(r)}+i \theta\right\}, \quad z=\frac{1}{r} e^{-i \theta}
$$

is single-valued and pseudo-analytic in the domain $0<|z|<1 / r_{0}$. Its 'Dilatationsquotient' is equal to $D(r)$ at every points on the circle $|z|=1 / r$. If the integral (1) converges, then the function $w=f(z)$ is bounded. Hence (P) is the maximal class for which we can extend the theory of cluster sets.

[^0]
[^0]: 9) T. Yosida: Proc. 26 (1950).
 10) M. Tsuji: Proc. 19 (1943).
 11) K. Kunugi : Loc. cit.
 12) K. Noshiro : Jour. Math. Soc. Jap. 1 (1950), Nagoya Math. 1 (1950).
