111. On Spaces with a Complete Structure.

By Taira Shirota.

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1951.)

The purpose of this note is to study the problem: Is it true that every completely regular space with a complete structure is homeomorphic to a closed subset of a Cartesian product of the space of real numbers with its usual topology?

Concerning the above problem, under a restriction with respect to cardinal numbers of the spaces, an affirmative answer will be given in this note.

§1. Definition 1.¹⁾ Let us call the structure of a completely regular space X with the uniformity made up of all countable normal coverings of the space X the *e-structure* of X and denote by eX. Moreover we say the space with the complete *e*-structure to be *e-complete* and let us call a cardinal number m to be *e-complete* if the discrete space with the potency m is *e*-complete.

Definition 2.³⁾ Let X be a completely regular space and let C(X, R) be the set of all real-valued continuous functions with domain X. Further-more let f be a function in C(X, R). Then the set of points in X for which f vanishes is said to be a Z-set and is denoted by Z(f). Finally let Z(X) be the family of all Z-sets of X. Then a subfamily \mathfrak{A} , of the family Z(X) is said to be a CZ-maximal family of X if \mathfrak{A} enjoys the following four conditions:

- a) \mathfrak{A} is not an empty family,
- b) A does not contain a void set,
- c) A never contains countable subfamilies with total intersection void, and
- d) \mathfrak{A} is maximal with respect to the properties a), b) and c).

§ 2. Lemma 1. Every CZ-maximal family of a completely regular space X is a Cauchy family of the e-structure eX. For any Cauchy family of the e-structure eX there exists a Cauchy family such that they are equivalent.

Lemma 2.³⁾ A completely regular space is homeomorphic to a closed subset of a Cartesian product of the reals if and only if for any CZ-maximal family the total intersection is not void.

¹⁾ J. W. Tukey: Convergence and uniformity in topology, Princeton University press, Princeton 1940; T. Shirota: On systems of structures of a completely regular space, Osaka Math. J. 2 (1950).

²⁾ E. Hewitt: Rings of real valued continuous functions, Trans. Amer. Math. Soc. 64 (1948).

³⁾ E. Hewitt: loc. cit, 2).

From Lemma 1 and 2 we have

Theorem 1. A completely regular space X is e-complete if and only if it is homeomorphic to a closed subset of a Cartesian product of the reals.

§3. Cardinal numbers and discrete spaces.

Lemma 3. If two cardinal numbers \mathfrak{m} and \mathfrak{n} are e-complete, then $\mathfrak{n}^{\mathfrak{m}}$ is also e-complete. If every cardinal number less than a given cardinalnumber \mathfrak{m} is e-complete and if \mathfrak{m} is represented by the sum $\sum_{\alpha \in A} \mathfrak{m}_{\alpha}$ where the cardinal number |A| of A is less than \mathfrak{m} and $\mathfrak{m}_{\alpha} < \mathfrak{m}$, then \mathfrak{m} is also e-complete.

The above lemma can be proved by the method used by Ulam.⁴)

§ 4. Lemma 4. Let $\{\mathfrak{U}_n \mid n = 1, 2, 3, ...\}$ be a normal sequence of open coverings of a completely regular space X and let $\mathfrak{U}_1 = \{U_a \mid A\}$. Then there exists a family $\{E_{\mathfrak{p}_m} \mid \beta_m \in B_m \& m = 1, 2, ...\}$ of subsets of X satisfying the following conditions:

- i) $\{E_{\beta_m} | \beta_m \in B_m \& m = 1, 2, 3, \ldots\}$ is a closed covering of X,
- ii) $E\beta_m^{(1)} \neq E\beta_m^{(2)}$ for $\beta_m^{(1)} \neq \beta_m^{(3)}$,
- iii) E'_{β_m} is not void,

iv) every element of U_{m+3} does not intersect two element of $\{E_{\theta_m} | \beta_m \in B_m\}$ at the same time, and

v) $s(E_{\beta_m}, \mathfrak{U}_{m+3}) \subset U_{\beta}$,

where B_m is a subset of the set A.

This lemma is due to H. A. Stone.⁵)

Lemma 5. Let X and Y be two completely regular spaces and let ϕ be a continuous mapping of X into Y. Then if \mathfrak{A} is a CZmaximal family of X, the subfamily of Z(Y):

$$\mathfrak{A}' = \{ Z' \mid Z' > \phi(Z) \text{ for some } Z \in \mathfrak{A} \& Z' \in Z(Y) \}$$

is a CZ-maximal family of Y.

Lemma 6. Let \mathfrak{A} be a CZ-maximal family of a completely regular space X and let f be a function in C(X, R) which is not constant and not negative such that $F_0 = Z(f)$. Then if $F_1 = \{x | f(x) \leq a\}$ where a > 0, the subfamily of $Z(F_1)$:

 $\mathfrak{A}' = \{Z(g) \mid g \in C(F_1, R) \& Z(g) > Z \cap F_0 \neq 0 \text{ for some } Z \in \mathfrak{A}\}$

is a CZ-maximal family of F_1 .

⁴⁾ S. Ulam: Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930).

⁵⁾ A. H. Stone: Paracompactness and product space, Bull. Amer. Math. Soc. 54 (1948).

By virtue of Lemmas 4, 5 and 6 we have

Theorem 2. Let X be a completely regular space whose cardinal number |X| is e-complete. Then if there exists a complete structure over X, X is e-complete.

Proof. Suppose that X admits a complete structure gX with the uniformity $\{\mathfrak{U}_{\delta} | D\}$. Let \mathfrak{A} be a *CZ*-maximal family of X. Moreover let $\mathfrak{U} = \{U_{\alpha} | A\}$ be an arbitrary normal covering in $\{\mathfrak{U}_{\delta} | D\}$. Then there exists a normal sequence $\{\mathfrak{U}_{n} | n = 1, 2, 3, \ldots\}$ such that

$$\mathfrak{u} > \mathfrak{u}_1 > \mathfrak{u}_2 > \mathfrak{u}_2 > \mathfrak{u}_n > \mathfrak{u}_n$$

According to Lemma 4 there exists a closed covering of $X \ \{E_{\mathfrak{f}_m} | B_m \subset A \ \& \ m = 1, 2, 3, \ldots\}$ such that it satisfies of the conditions of this lemma. Let $F_m = \sum_{\mathfrak{f}_m \in B_m} E_{\mathfrak{f}_m}$. Then $\{F_m | \ m = 1, 2, 3, \ldots\}$ is a closed covering. Since \mathfrak{A} admits the condition c) of § 1, there exists a set $F_n \in \{F_m\}$ such that F_n is compatible with \mathfrak{A} . Let f be a continuous function such that f(x) = 0 for $x \in F_n$ and f(x) = 2 for $x \notin S(F_n, \mathfrak{U}_{n+6})$; moreover, let $Z_0 = \{x | f(x) \leq 0\}$ and let $Z_1 = \{x | f(x) \leq 1\}$. Then since $Z_0 \supset F_n$, $Z_0 \in \mathfrak{A}$ and by Lemma 6, the family

$$\mathfrak{A}' = \{ Z(g) \mid g \in C(Z_1, R) \& Z(g) \supset Z \cap Z_0 \neq 0 \text{ for some } Z \in \mathfrak{A} \}$$

is a CZ-maximal family of Z_1 .

Now, it is easy to show that $Z_1 = \sum_{\beta_n \in B_n} Z_{\beta_n}$, where $S(E_{\beta_n}, \mathfrak{U}_{n+5})$ $> Z_{\beta_n} > E_{\beta_n}$. Hence for two different indices α_n and β_n belonging to B_n , $S(Z_{\beta_n}, \mathfrak{U}_{n+5}) \cap S(Z_{\alpha_n}, \mathfrak{U}_{n+5}) \subset S(E_{\beta_n}, \mathfrak{U}_{n+4}) \cap S(E_{\alpha_n}, \mathfrak{U}_{n+4}) = 0$. Hence the mapping ϕ of Z_1 onto the discrete space B_n such that if $x \in Z_{\beta_n}$, $\phi(x) = \beta_n$, is continuous, and therefore by Lemma 5 the family of subsets of B_n

$$\mathfrak{A}'' = \{ C \mid B_n \ge C \ge \phi(Z') \text{ for some } Z' \in \mathfrak{A}' \}$$

is a CZ-maximal family of B_n . Since $|B_n| \leq |A| \leq |X|$ and since |X| is e-complete, B_n is e-complete. Hence there exists a $\beta_n \in B_n$ such that $\{\beta_n\}$ is the total intersection of \mathfrak{A}'' , i.e., $\beta_n \in \phi(Z')$ for any $Z' \in \mathfrak{A}'$. Then it is easy to see that for any $Z \in \mathfrak{A} \ Z \cap Z_{\beta_n} \neq 0$, hence $Z_{\beta_n} \in \mathfrak{A}$. Moreover $Z_{\beta_n} \subset S(E_{\beta_n}, \mathfrak{U}_{n+5}) \subset S(E_{\beta_n}, \mathfrak{U}_{n+3}) \subset U_{\beta} \in \mathfrak{U}$ by the condition v) of Lemma 5. Thus we see that for any $\mathfrak{U}_{\delta} \in \{\mathfrak{U}_{\delta} \mid D\}$ there exists a $Z \in \mathfrak{A}$ such that $Z \subset U \in \mathfrak{U}_{\delta}$. This fact is equivalent to the statement that \mathfrak{A} is a Cauchy family of gX.

By the assumption of our theorem gX is complete, hence there exists a limit point x of the Cauchy family \mathfrak{A} of gX, i.e., x is the

total intersection of \mathfrak{A} . Since \mathfrak{A} is an arbitrary CZ-maximal family, X is e-complete by Lemma 1. Thus the proof is complete.

From Theorem 2 we have immediately the following

Theorem 3. Let X be a fully normal T_1 -space. Then if |X| is an e-complete cardinal number, X is e-complete.

For, any fully normal space admits a complete structure⁶).

§ 5. From Theorem 1, Theorem 2 and Lemma 3 we obtain the following two theorems.

Theorem 4. The following three statements are equivalent:

a) every completely regular space with complete structure is homeomorphic to a closed subset of a Cartesian product of the reals,
b) every cardinal number is e-complete,

c) every discrete space admits no measure completely additive on all subsets, vanishing for every point, assuming only value 0 and 1 and equal to 1 for the whole $space^{-3}$.

Theorem 5. For spaces X whose cardinal numbers |X| are weakly accessible from $\chi_0^{(s)}$ in A. Tarski's sense, i.e., $|X| \leq 2^{\chi_0}$, $\leq f$ or $\leq 2^{\dagger}$ etc., the following conditions are equivalent:

a) X is homeomorphic to a closed subset of a Cartesian product of the reals,

b) there exists a complete structure over X,

c) X is e-complete.

The other properties of the *e*-complete space and the properties of C(X, R) as well as the full proofs of the above theorems will be given in the Osaka Mathematical Journal.

⁶⁾ This was proved by the author in 1948.

⁷⁾ S. Ulam: loc. cit., 4); E, Hewitt: Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950).

A. Tarski: Über unerreichbare Kardinalzahlen, Fund. Math. 30 (1938);
 A. Tarski: Drei Überdekungssätze der allgemeinen Mengenlehre, Fund. Math. 30 (1938).