110. Modulared Sequence Spaces.

By Hidegorô Nakano.

(Comm. by K. Kunugi, m.J.A., Nov. 12, 1951.)
A collection R of sequences of real numbers $\left(x_{1}, x_{2}, \ldots\right)$ is called a sequence space, if R is a linear space, i.e. $R \ni\left(x_{1}, x_{2}, \ldots\right)$, $\left(y_{1}, y_{2}, \ldots\right)$ implies $R \ni\left(\alpha x_{1}+\beta y_{1}, \alpha x_{2}+\beta y_{2}, \ldots\right)$. For two sequence spaces R and S, if there is a sequence of positive numbers α_{ν} ($\nu=1,2, \ldots$) such that, putting $y_{\nu}=\alpha_{\nu} x_{\nu}(\nu=1,2, \ldots)$, we obtain a one-to-one corresponding between $\left(x_{1}, x_{2}, \ldots\right) \in R$ and $\left(y_{1}, y_{2}, \ldots\right) \in S$, then we shall say that R and S are equivalent to each other and write $R \cong S$.

For a sequence of positive numbers $p_{v} \geqq 1(\nu=1,2, \ldots)$, we see easily that the totality of sequences $\left(x_{1}, x_{2}, \ldots\right)$ subject to the condition

$$
\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}}\left|\alpha x_{v}\right|^{p_{\nu}}<+\infty \quad \text { for some } \quad \alpha>0
$$

constitutes a sequence space. This sequence space will be denoted by $l\left(p_{1}, p_{2}, \ldots\right)$. Furthermore, putting

$$
m(x)=\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}}\left|x_{\nu}\right|^{p_{\nu}} \quad \text { for } \quad x=\left(x_{1}, x_{2}, \ldots\right),
$$

we obtain a modular ${ }^{1)} m$ on $l\left(p_{1}, p_{2}, \ldots\right)$, and putting

$$
\|x\|=\inf _{m(\xi x) \leq 1} \frac{1}{|\xi|}
$$

we can introduce a norm $\left.{ }^{2}\right)\|x\|$ into $l\left(p_{1}, p_{2}, \ldots\right)$. Then $l\left(p_{1}, p_{2}\right.$, $\ldots)$ is complete by this norm. ${ }^{3)}$ Therefore, if $l\left(p_{1}, p_{2}, \ldots\right) \cong$ $l\left(q_{1}, q_{2}, \ldots\right)$, then we can find positive numbers α, β such that $\|x\| \leqq \alpha\|y\|,\|y\| \leqq \beta\|x\|$ for a just described one-to-one correspondence $l\left(p_{1}, p_{2}, \ldots\right) \ni x \leftrightarrow y \in l\left(q_{1}, q_{2}, \ldots\right) .^{4}$

In this paper we shall prove the following theorems.
Theorem 1. In order that $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$, it is necessary and sufficient that we have

$$
\sum_{v=1}^{\infty} \frac{p_{v} q_{v}}{\left\langle p_{v \nu-} q_{v \mid}\right.}<+\infty \text { for some } \alpha>0
$$

Here we make use of the convention $\alpha^{\infty}=0$.

[^0]Theorem 2. If $\lim _{v \rightarrow \infty} p_{\nu}=1$, then every weakly convergent series in $l\left(p_{1}, p_{:}, \ldots\right)$ is strongly convergent.

§ 1. Proof of Theorem 1.

Lemma 1. For sequences of positive numbers $\xi_{\nu}(\nu=1,2, \ldots)$, if $\sum_{\nu=1}^{\infty} \xi_{\nu \nu}^{p_{\nu}}<+\infty$ implies $\sum_{\nu=1}^{\infty}\left(\alpha_{\nu}^{*}\right)^{q_{\nu}}<+\infty$ for some $\alpha>0$, and if $\sum_{\nu=1}^{\infty} \xi_{\nu=1}^{\eta_{\nu}}<+\infty$ implies $\sum_{\nu=1}^{\infty}\left(\alpha \xi_{\nu}\right)^{p_{\nu}}<+\infty$ for some $\alpha>0$, then we have

$$
l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)
$$

Proof. According to the definition, we conclude easily from the assumption that $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$ by the correspondence

$$
y_{v}=\frac{p_{v}^{\frac{1}{p_{v}}}}{q_{v}^{\frac{1}{q_{v}}}} x_{v} \quad(\nu=1,2, \ldots)
$$

$\left(x_{1}, x_{2}, \ldots\right) \in l\left(p_{1}, p_{2}, \ldots\right),\left(y_{1}, y_{2}, \ldots\right) \in l\left(q_{1}, q_{2}, \ldots\right)$.
Lemma 2. If $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{n}, \ldots\right)$ and the sequence $\boldsymbol{q}_{\nu}(\nu=1,2, \ldots)$ is bounded, then $\sum_{\nu=1}^{\infty} \xi_{\nu}^{p_{\nu}}<+\infty$ implies $\sum_{\nu=1}^{\infty} \xi_{\nu}^{Z_{\nu}}<+\infty$.

Proof. There is by assumption a sequence of positive numbers $\alpha_{\nu}(\nu=1,2, \ldots)$ such that $\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}}\left|x_{\nu}\right|^{p_{\nu}}<+\infty$ implies $\sum_{\nu=1}^{\infty} \frac{1}{q_{\nu}}\left|\alpha_{\nu} x_{\nu}\right|^{\left.\right|_{\nu}}<+\infty$, since $q_{\nu}(\nu=1,2, \ldots$.$) is bounded by assumption. Thus, if$
 and hence, putting $q=\sup q_{\nu}$, we can sellect a partial sequence $\nu_{\mu}(\mu=1,2, \ldots)$ such that ${ }_{q}=1,2, \ldots \nu_{\mu}<p \nu_{\mu}$ and

$$
\frac{1}{q_{\nu}}\left(\alpha_{\nu} p_{\nu}^{\frac{1}{p_{\nu}}}\right)^{q_{\nu}}<\frac{1}{2^{2 q^{\mu}}} \quad \text { for } \quad \nu=\nu_{\mu}
$$

Then, putting $x_{\nu}=p_{\nu} \frac{1}{\rho_{\nu}} 2^{\mu}$ for $\nu=\nu_{\mu}$ and $x_{\nu}=0$ for the other ν, we obtain

$$
\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}}\left(\alpha x_{\nu}\right)^{p_{\nu}}=\sum_{\mu=1}^{\infty}\left(\alpha 2^{\mu}\right)^{p_{\nu \mu}}=+\infty
$$

for every positive number α, but

$$
\sum_{\nu=1}^{\infty} \frac{1}{q_{\nu}}\left(\alpha \nu x_{\nu}\right)^{q_{\nu}}<\sum_{\mu=1}^{\infty} \frac{1}{2^{2 q \mu}} 2^{\mu \mu}=\sum_{\mu=1}^{\infty} \frac{1}{2^{2 \mu}}<+\infty,
$$

contradicting the assumption that $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$ by the correspondence $y_{\nu}=\underset{p_{\nu} v_{\nu}}{\alpha_{\nu} x_{\nu}}(\nu=1,2, \ldots)$.

Lemma 3. If $\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu} q_{\nu}}{\left|p_{\nu}-q_{\nu}\right|}}<+\infty$ for some $\alpha>0$, then we have $\dot{l}\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$.

Proof. We can assume that $\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu} q_{\nu}}{\left|p_{\nu}-q_{\nu}\right|}}<+\infty$ for a positive number $\alpha<1$. If $\sum_{v=1}^{\infty} \xi_{\nu}^{p_{v}}<+\infty$, then we have

$$
\begin{aligned}
\sum_{\nu=1}^{\infty}\left(\alpha \xi_{\nu}\right)^{q_{\nu}} & =\sum_{\xi_{\nu} p_{\nu}-q_{\nu}} \geqq \alpha^{q_{\nu}}\left(\alpha \xi_{\nu}\right)^{q_{\nu}}+\sum_{\xi_{\nu} p_{\nu}-q_{\nu}<\alpha^{q_{\nu}}}\left(\alpha \xi_{\nu}\right)^{q_{\nu}} \\
& \leqq \xi_{\xi_{\nu} p_{\nu}-q_{\nu}} \sum_{\alpha^{q_{\nu}}} \xi_{\nu \nu}^{p_{\nu}}+\sum_{\xi_{\nu} p_{\nu}-q_{\nu}<\alpha^{q_{\nu}}} \alpha^{\frac{p_{\nu} q_{\nu}}{p_{\nu}-q_{\nu}}}<+\infty,
\end{aligned}
$$

because we have $\xi_{\nu}<1$ except for a finite number of ν, and if $\xi_{\nu}<1, \xi_{\nu}^{p_{\nu}-q_{\nu}}<\alpha^{q_{\nu}}$, then we have $p_{\nu}>q_{\nu}$ and $\left(\alpha \xi_{\nu}\right)^{q_{\nu}}<\alpha^{\frac{p_{\nu} q_{\nu}}{p_{\nu}-q_{\nu}}}$. We also can prove likewise that $\sum_{\nu=1}^{\infty} \xi_{\nu}^{q_{\nu}}<+\infty$ implies $\sum_{\nu=1}^{\infty}\left(\alpha \xi_{\nu}\right)^{p_{\nu}}<+\infty$. Therefore we obtain $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$ by Lemma 1.

Lemma 4. If $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$ and the sequence $q_{\nu}(\nu=1,2, \ldots)$ is bounded, then we have

$$
\sum_{\nu=1}^{\infty} \alpha^{\frac{1}{\left|p_{\nu}-q_{\nu}\right|}}<+\infty \quad \text { for some } \quad \alpha>0
$$

Proof. Considering partial sequences, we recognize easily that we need only prove the case where $p_{\nu}>q_{\nu}(\nu=1,2, \ldots)$. If $\sum_{\nu=1}^{\infty} \alpha^{p_{\nu} \frac{1}{q_{\nu}}}=+\infty$ for every $\alpha>0$, then we can determine a partial sequence $\nu_{\mu}(\mu=1,2, \ldots)$ such that

$$
1 \leqq \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1}\left(\frac{1}{2^{\mu}}\right)^{\frac{1}{\nu_{\nu}-q_{\nu}}}<2 .
$$

Then, putting $\xi_{\nu}=\left(\frac{1}{2^{\mu}}\right)^{\frac{1}{\left.\rho_{\nu}-q_{\nu}\right)_{\nu}}}$ for $\nu_{\mu} \leqq \nu<\nu_{\mu+1}$, we have

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} \xi_{\nu}^{q_{\nu}} & =\sum_{\mu=1}^{\infty} \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1}\left(\frac{1}{2^{\mu}}\right)^{\frac{1}{p_{\nu}-q_{\nu}}}=+\infty, \\
\sum_{\nu=1}^{\infty} \xi_{\nu}^{p_{\nu}} & =\sum_{\mu=1}^{\infty} \sum_{\mu=\nu_{\mu}}^{\nu_{\mu+1}-1}\left(\frac{1}{2^{\mu}}\right)^{p_{\nu}-q_{\nu}+\eta_{\nu}} \\
& <\sum_{\mu=1}^{\infty} 2\left(\frac{1}{2^{\mu}}\right)^{\eta}<+\infty
\end{aligned}
$$

for $q=\sup _{\nu=1,2, \ldots} q_{\nu}$. Therefore we can not have $l\left(p_{1}, p_{2}, \ldots\right)$ $\cong l\left(q_{1}, q_{2}, \ldots\right)$ by Lemma 2.

Lemma 5. If $\frac{1}{p_{\nu}}+\frac{1}{p_{\nu}^{\prime}}=1, \frac{1}{q_{\nu}}+\frac{1}{q_{\nu}^{\prime}}=1 \quad(\nu=1,2, \ldots)$, then $l\left(p_{1}, p_{2}, \ldots.\right) \cong l\left(q_{1}, q_{2}, \ldots.\right)$ is equivalent to $l\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right)$ $\cong l\left(q_{1}^{\prime}, q_{2}^{\prime}, \ldots\right)$.

Proof. $l\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right)$ is the conjugate space ${ }^{-1}$ of $l\left(p_{1}, p_{2}, \ldots\right)$, considering every $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right) \in l\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right)$ as a linear functional on $l\left(p_{1}, p_{2}, \ldots\right)$ by

$$
x^{\prime}(x)=\sum_{\nu=1}^{\infty} x_{\nu}^{\prime} x_{v} \quad \text { for } \quad x=\left(x_{1}, x_{2}, \ldots\right) \in l\left(p_{1}, p_{2}, \ldots\right)
$$

Similarly $l\left(q_{1}^{\prime}, q_{2}^{\prime}, \ldots\right)$ is the conjugate space of $l\left(q_{1}, q_{2}, \ldots\right)$. Thus we obtain easily our assertion by the definition of the conjugate space.

Lemma 6. If $l\left(p_{1}, p_{2}, \ldots\right) \cong l\left(q_{1}, q_{2}, \ldots\right)$, then we have

$$
\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu} q_{v}}{\left|p_{v}-q_{v}\right|}}<+\infty \quad \text { for some } \quad \alpha>0
$$

Proof. If one of sequences p_{ν} and $q_{\nu}(\nu=1,2, \ldots)$ is bounded, then there is by Lemma 4 a positive number $\alpha<1$ for which $\sum_{\nu=1}^{\infty} \alpha^{\frac{1}{\left|p_{\nu}-q_{\nu}\right|}}<+\infty$, and we have obviously $\alpha^{\frac{p_{\nu} q_{\nu}}{\left|p_{\nu}-q_{\nu}\right|}} \leqq \alpha^{\frac{1}{p_{\nu}-q_{\nu} \mid}}(\nu=1$, 2,...). Thus, considering partial sequences, we recognize easily that we need only prove the case where $p_{\nu} \geqq q_{\nu} \geqq 2(\nu=1,2, \ldots)$. In this case, putting $\frac{1}{p_{\nu}}+\frac{1}{p_{\nu}^{\prime}}=1, \frac{1}{q_{\nu}}+\frac{1}{q_{\nu}^{\prime}}=1$, we have $p_{\nu}^{\prime} \leqq q_{\nu}^{\prime} \leqq 2$ $(\nu=1,2, \ldots)$ and $l\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right) \cong l\left(q_{1}^{\prime}, q_{2}^{\prime}, \ldots\right)$ by Lemma 5. Therefore there is by Lemma 4 a positive number $\alpha<1$ for which $\sum_{\nu=1}^{\infty} \alpha^{\frac{1}{q_{\nu}-p_{\nu}}}<+\infty$. Since $\frac{1}{q_{\nu}^{\prime}-p_{\nu}^{\prime}}=\frac{\left(p_{\nu}-1\right)\left(q_{\nu}-1\right)}{p_{\nu}-q_{\nu}}$, we obtain then

$$
\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu} q_{\nu}}{p_{\nu}-q_{\nu}}} \leqq \sum_{\nu=1}^{\infty} \alpha^{\frac{\left(p_{\nu}-1\right)\left(q_{\nu}-1\right)}{p_{\nu}-q_{\nu}}}<+\infty .
$$

§2. Proof of Theorem 2.

We assume firstly that $p_{\nu}>1(\nu=1,2, \ldots)$ and $\lim _{\nu \rightarrow \infty} p_{\nu}=1$. If a sequence of sequences

$$
x_{\mu}=\left(x_{\mu, 1}, x_{\mu, 2}, \ldots\right) \in l\left(p_{1}, p_{2}, \ldots\right) \quad(\mu=1,2, \ldots)
$$

is weakly convergent to 0 , then we have obviously $\lim _{\mu \rightarrow \infty} x_{\mu, \nu}=0$ for every $\nu=1,2, \ldots$, and $\sup _{\mu=1,2, \ldots}\left\|x_{\mu}\right\|<+\infty$. ${ }^{6}$ Thus we can suppose further that $\left\|x_{\mu}\right\| \leqq 1(\mu=1,2, \ldots)$ and hence $\left.m\left(x_{\mu}\right) \leqq 1 .{ }^{7}\right)$ If there is a positive number ε for which $m\left(x_{\mu}\right)>\varepsilon(\mu=1,2, \ldots)$, tnen we can find a partial sequence $\nu_{\mu}(\mu=1,2, \ldots)$ such that
5) Ibid., Theorem 54.14.
6) Ibid., Theorem 32.6.
7) Ibid., Theorem 40.12.

$$
\begin{aligned}
& \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{p_{\nu}}\left|x_{\mu, \nu}\right|^{p_{\nu}}>\varepsilon \\
& p_{\nu} \leqq 1+\frac{1}{2^{\mu}} \quad \text { for } \quad \nu \geqq \nu_{\mu}
\end{aligned}
$$

For $\frac{1}{p_{\nu}}+\frac{1}{p_{\nu}^{\prime}}=1(\nu=1,2, \ldots)$, putting $y_{\nu}=0$ for $\nu<\nu_{1}$ and

$$
y_{\nu}=\left|x_{\mu, \nu}\right|^{\frac{p_{\nu}}{p_{\nu}}} \quad \text { for } \quad \nu_{\mu} \leqq \nu<\nu_{\mu+1},
$$

we have then $p_{\nu}^{\prime} \geqq 2^{\mu}+1$ for $\nu \geqq \nu_{\mu}$ and

$$
\begin{aligned}
\sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{p_{\nu}^{\prime}} y_{\nu}^{p_{\nu}} \leqq & \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{2^{\mu}+1}\left|x_{\mu, \nu}\right|^{p_{\nu}} \leqq \frac{1}{2^{\mu}} \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{p_{\nu}}\left|x_{\mu, \nu}\right|^{p_{\nu}} \\
& \leqq \frac{1}{2^{\mu}} m\left(x_{\mu}\right) \leqq \frac{1}{2^{\mu}}
\end{aligned}
$$

We obtain thus $\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}^{\prime}} y_{\nu}^{p_{\nu}}<+\infty$ and hence $\left(y_{1}, y_{2}, \ldots\right) \in l\left(p_{1}^{\prime}, p_{2}^{\prime}\right.$, ...). However we have for every $\mu=1,2, \ldots$

$$
\sum_{\nu=1}^{\infty}\left|x_{\mu, \nu}\right| y_{\nu} \geqq \sum_{\nu=j_{\mu}}^{\nu_{\mu+1}-1}\left|x_{\mu, \nu}\right|^{1+\frac{p_{\nu}}{p_{\nu}}} \geqq \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{p_{\nu}}\left|x_{\mu, \nu}\right|^{p_{\nu}}>\varepsilon,
$$

and this relation is impossible, because $l\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right)$ is the conjugate space of $l\left(p_{1}, p_{2}, \ldots\right)$ and

$$
\left|x_{\mu}\right|=\left(\left|x_{\mu, 1}\right|,\left|x_{\mu, 2}\right|, \ldots\right) \quad(\mu=1,2, \ldots)
$$

also is weakly convergent to $0 .{ }^{8}$ Therefore, considering partial sequences, we conclude easily $\lim _{\mu \rightarrow \infty} m\left(x_{\mu}\right)=0$, and hence $\left.\lim _{\mu \rightarrow \infty}\left\|x_{\mu}\right\|=0 .{ }^{9}\right)$

For $x=\left(x_{1}, x_{2}, \ldots\right) \in l(1,1, \ldots)$ we have obviously

$$
\|x\|=m(x)=\sum_{\nu=1}^{\infty}\left|x_{\nu}\right|
$$

Thus, if $x_{\mu}=\left(x_{\mu, 1}, x_{\mu, 2}, \ldots\right) \in i(1,1, \ldots)$ is weakly convergent to then we have $\lim _{\mu \rightarrow \infty}\left\|x_{\mu}\right\|=0 .^{(0)}$ Therefore, considering partial sequences, we conclude Theorem 2.

Finally we remark that, putting

$$
p_{\nu}=1+\frac{1}{\log (\log (\nu+4))} \quad(\nu=1,2, \ldots)
$$

we have $\lim _{\nu \rightarrow \infty} p_{\nu}=1$, but not $l\left(p_{1}, p_{2}, \ldots\right) \cong l(1,1, \ldots)$ by Theorem 1 , since we have for every $\alpha>0$

$$
\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu}}{p_{\nu}-1}}=\sum_{\nu=1}^{\infty} \alpha(\log (\nu+4))^{\log \alpha}=+\infty .
$$

8) H. Nakano: Discrete semi-ordered linear spaces (in Japanese), Functional Analysis, I (1947-9) 204-207. I. Halperin and H. Nakano: Discrete semi-ordered linear spaces, Canadian Jour. of Math., III (1951) 293-298, Lemma 1.
9) C.f. 1), Theorem 40.5.
10) J. Schur : Ueber lineare Transformationen in der Theorie der unendlichen Reihen, Jour. für reine und angew. Math. 151 (1921) 79-111. C. f. 8).

[^0]: 1) H. Nakano: Modulared semi-ordered linear spaces, Tokyo Math. Book Series, I (1950), § 35.
 2) Ibid., Theorems 44.8 and 43.6.
 3) Ibid., Theorems 40.6 and 40.9 .
 4) Ibid., Theorem 30.28 .
