110. Modulared Sequence Spaces.

By Hidegorô NAKANO. (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1951.)

A collection R of sequences of real numbers $(x_1, x_2, ...)$ is called a sequence space, if R is a linear space, i.e. $R \ni (x_1, x_2, ...)$, $(y_1, y_2, ...)$ implies $R \ni (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, ...)$. For two sequence spaces R and S, if there is a sequence of positive numbers α_v (v = 1, 2, ...) such that, putting $y_v = \alpha_v x_v$ (v = 1, 2, ...), we obtain a one-to-one corresponding between $(x_1, x_2, ...) \in R$ and $(y_1, y_2, ...) \in S$, then we shall say that R and S are equivalent to each other and write $R \cong S$.

For a sequence of positive numbers $p_{\nu} \ge 1$ ($\nu = 1, 2, ...$), we see easily that the totality of sequences $(x_1, x_2, ...)$ subject to the condition

$$\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}} |\alpha x_{\nu}|^{p_{\nu}} < +\infty \quad \text{for some} \quad \alpha > 0 ,$$

constitutes a sequence space. This sequence space will be denoted by $l(p_1, p_2, ...)$. Furthermore, putting

$$m(x) = \sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}} |x_{\nu}|^{p_{\nu}} \text{ for } x = (x_1, x_2, \ldots),$$

we obtain a modular' m on $l(p_1, p_2, ...)$, and putting

$$||x|| = \inf_{m(z,z) \le 1} \frac{1}{|\xi|}$$

we can introduce a norm²⁾ ||x|| into $l(p_1, p_2, ...)$. Then $l(p_1, p_2, ...)$ is complete by this norm.³⁾ Therefore, if $l(p_1, p_2, ...) \cong l(q_1, q_2, ...)$, then we can find positive numbers α, β such that $||x|| \leq \alpha ||y||, ||y|| \leq \beta ||x||$ for a just described one-to-one correspondence $l(p_1, p_2, ...) \ni x \leftrightarrow y \in l(q_1, q_2, ...)$.⁴⁾

In this paper we shall prove the following theorems.

Theorem 1. In order that $l(p_1, p_2, ...) \cong l(q_1, q_2, ...)$, it is necessary and sufficient that we have

$$\sum_{\nu=1}^{\infty} lpha^{rac{p_{
u}q_{
u}}{|p_{
u}-q_{
u}|}} <+\infty \quad for \ some \quad lpha > 0.$$

Here we make use of the convention $\alpha^{\infty} = 0$.

¹⁾ H. Nakano: Modulared semi-ordered linear spaces, Tokyo Math. Book Series, I (1950), § 35.

²⁾ Ibid., Theorems 44.8 and 43.6.

³⁾ Ibid., Theorems 40.6 and 40.9.

⁴⁾ Ibid., Theorem 30.28.

No. 9.]

Theorem 2. If $\lim p_{\nu} = 1$, then every weakly convergent series in $l(p_1, p_2, \ldots)$ is strongly convergent.

§1. Proof of Theorem 1.

Lemma 1. For sequences of positive numbers $\xi_{\nu}(\nu = 1, 2, ...)$, $\inf_{\substack{\nu=1\\\nu=1}}^{\infty} \xi_{\nu\nu}^{p_{\nu}} < + \infty \text{ implies } \sum_{\substack{\nu=1\\\nu=1}}^{\infty} (\alpha \xi_{\nu})^{p_{\nu}} < + \infty \text{ for some } \alpha > 0, \text{ and if } \\ \sum_{\nu=1}^{\infty} \xi_{\nu\nu}^{q_{\nu}} < + \infty \text{ implies } \sum_{\substack{\nu=1\\\nu=1}}^{\infty} (\alpha \xi_{\nu})^{p_{\nu}} < + \infty \text{ for some } \alpha > 0, \text{ then we have }$ $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots).$

Proof. According to the definition, we conclude easily from the assumption that $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots)$ by the correspondence

$$y_{m{
u}} = rac{p_{m{
u}}^{rac{1}{p_{m{
u}}}}}{q_{m{
u}}^{rac{1}{2}}} x_{m{
u}} ~~(
u = 1, \, 2, \, \ldots) \,,$$

 $(x_1, x_2, \ldots) \in l(p_1, p_2, \ldots), (y_1, y_2, \ldots) \in l(q_1, q_2, \ldots).$

Lemma 2. If $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots)$ and the sequence $q_{\nu} (\nu = 1, 2, \ldots)$ is bounded, then $\sum_{\nu=1}^{\infty} \xi_{\nu}^{p_{\nu}} < +\infty$ implies $\sum_{\nu=1}^{\infty} \xi_{\nu}^{r_{\nu}} < +\infty$.

Proof. There is by assumption a sequence of positive numbers $\alpha_{\nu}(\nu=1, 2, ...)$ such that $\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}} |x_{\nu}|^{p_{\nu}} < +\infty$ implies $\sum_{\nu=1}^{\infty} \frac{1}{q_{\nu}} |\alpha_{\nu}x_{\nu}|^{q_{\nu}} < +\infty$, since $q_{\nu}(\nu = 1, 2, ...)$ is bounded by assumption. Thus, if $\sum_{\nu=1}^{\infty} \xi_{\nu}^{p_{\nu}} < +\infty$ but $\sum_{\nu=1}^{\infty} \xi_{\nu}^{q_{\nu}} = +\infty$, then we have $\sum_{\nu=1}^{\infty} \frac{1}{q_{\nu}} (\alpha_{\nu}p_{\nu})^{\frac{1}{p_{\nu}}} \xi_{\nu})^{q_{\nu}} < +\infty$, and hence, putting $q = \sup_{\nu = 1}^{1} q_{\nu}$, we can sellect a partial sequence u_{μ} ($\mu = 1, 2, \ldots$) such that $q_{\nu_{\mu}} < p_{\nu_{\mu}}$ and

$$rac{1}{q_
u}(lpha_
u p_
u^{rac{1}{p_
u}})^{q_
u} < rac{1}{2^{2q\mu}} \qquad ext{for} \quad
u =
u_\mu \,.$$

Then, putting $x_{\nu} = p_{\nu}^{\frac{1}{p_{\nu}}} 2^{\mu}$ for $\nu = \nu_{\mu}$ and $x_{\nu} = 0$ for the other ν , we obtain

$$\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}} (\alpha x_{\nu})^{p_{\nu}} = \sum_{\mu=1}^{\infty} (\alpha 2^{\mu})^{p_{\nu\mu}} = +\infty$$

for every positive number α , but

$$\sum_{\nu=1}^{\infty} \frac{1}{q_{\nu}} (\alpha_{\nu} x_{\nu})^{q_{\nu}} < \sum_{\mu=1}^{\infty} \frac{1}{2^{2q\mu}} 2^{q\mu} = \sum_{\mu=1}^{\infty} \frac{1}{2^{q\mu}} < + \infty,$$

contradicting the assumption that $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots)$ by

the correspondence $y_{\nu} = \alpha_{\nu} x_{\nu} (\nu = 1, 2, ...)$. Lemma 3. If $\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu} y_{\nu}}{p_{\nu} - q_{\nu}}} < +\infty$ for some $\alpha > 0$, then we have $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots)$

H. NAKANO.

[Vol. 27,

Proof. We can assume that $\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu}q_{\nu}}{p_{\nu}-q_{\nu}}} < +\infty$ for a positive number $\alpha < 1$. If $\sum_{\nu=1}^{\infty} \xi_{\nu}^{p_{\nu}} < +\infty$, then we have

$$\sum_{\nu=1}^{\infty} (\alpha \xi_{\nu})^{q_{\nu}} = \sum_{\xi_{\nu}^{p_{\nu}-q_{\nu}} \ge \alpha^{q_{\nu}}} (\alpha \xi_{\nu})^{q_{\nu}} + \sum_{\xi_{\nu}^{p_{\nu}-q_{\nu}} < \alpha^{q_{\nu}}} (\alpha \xi_{\nu})^{q_{\nu}}$$
$$\leq \sum_{\xi_{\nu}^{p_{\nu}-q_{\nu}} \ge \alpha^{q_{\nu}}} \xi_{\nu}^{p_{\nu}} + \sum_{\xi_{\nu}^{p_{\nu}-q_{\nu}} < \alpha^{q_{\nu}}} \alpha^{\frac{p_{\nu}q_{\nu}}{p_{\nu}-q_{\nu}}} < + \infty,$$

because we have $\xi_{\nu} < 1$ except for a finite number of ν , and if $\xi_{\nu} < 1$, $\xi_{\nu}^{p_{\nu}-q_{\nu}} < \alpha^{q_{\nu}}$, then we have $p_{\nu} > q_{\nu}$ and $(\alpha \xi_{\nu})^{q_{\nu}} < \alpha^{\frac{p_{\nu}q_{\nu}}{p_{\nu}-q_{\nu}}}$. We also can prove likewise that $\sum_{\nu=1}^{\infty} \xi_{\nu}^{q_{\nu}} < +\infty$ implies $\sum_{\nu=1}^{\infty} (\alpha \xi_{\nu})^{p_{\nu}} < +\infty$. Therefore we obtain $l(p_{\nu}, p_{\nu}, \ldots) \cong l(q_{\nu}, q_{\nu}, \ldots)$ by Lemma 1.

Lemma 4. If $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots)$ and the sequence $q_{\nu}(\nu = 1, 2, \ldots)$ is bounded, then we have

$$\sum_{\nu=1}^{\infty} \alpha^{\frac{1}{|\mathcal{P}_{\nu}^{-}\cdot \mathcal{P}_{\nu}|}} < + \infty \quad for some \quad \alpha > 0.$$

Proof. Considering partial sequences, we recognize easily that we need only prove the case where $p_{\nu} > q_{\nu} (\nu = 1, 2, ...)$. If $\sum_{\nu=1}^{\infty} \alpha^{p_{\nu} - q_{\nu}} = +\infty$ for every $\alpha > 0$, then we can determine a partial sequence $\nu_{\mu} (\mu = 1, 2, ...)$ such that

$$1 \leq \sum_{\nu=
u_{\mu}}^{
u_{\mu+1}-1} \left(\frac{1}{2^{\mu}}\right)^{\frac{1}{p_{
u}-q_{
u}}} < 2$$
.

Then, putting $\xi_{\nu} = \left(\frac{1}{2^{\mu}}\right)^{\frac{1}{(p_{\nu}-q_{\nu})q_{\nu}}}$ for $\nu_{\mu} \leq \nu < \nu_{\mu+1}$, we have

$$\sum_{\nu=1}^{\infty} \xi_{\nu}^{q_{\nu}} = \sum_{\mu=1}^{\infty} \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \left(\frac{1}{2^{\mu}}\right)^{\frac{1}{p_{\nu}-q_{\nu}}} = +\infty$$

$$\sum_{\nu=1}^{\infty} \xi_{\nu}^{p_{\nu}} = \sum_{\mu=1}^{\infty} \sum_{\mu=\nu_{\mu}}^{\nu_{\mu+1}-1} \left(\frac{1}{2^{\mu}}\right)^{\frac{1}{p_{\nu}-q_{\nu}}+\frac{1}{q_{\nu}}}$$

$$< \sum_{\mu=1}^{\infty} 2\left(\frac{1}{2^{\mu}}\right)^{\frac{1}{q}} < +\infty$$

for $q = \sup_{\nu=1, 2, ...} q_{\nu}$. Therefore we can not have $l(p_1, p_2, ...) \cong l(q_1, q_2, ...)$ by Lemma 2.

Lemma 5. If $\frac{1}{p_{\nu}} + \frac{1}{p'_{\nu}} = 1$, $\frac{1}{q_{\nu}} + \frac{1}{q'_{\nu}} = 1$ ($\nu = 1, 2, ...$), then $l(p_1, p_2, ...) \cong l(q_1, q_2, ...)$ is equivalent to $l(p'_1, p'_2, ...)$ $\cong l(q'_1, q'_2, ...)$. **Proof.** $l(p'_1, p'_2, ...)$ is the conjugate space⁵ of $l(p_1, p_2, ...)$, considering every $x' = (x'_1, x'_2, ...) \in l(p'_1, p'_2, ...)$ as a linear functional on $l(p_1, p_2, ...)$ by

$$x'(x) = \sum_{\nu=1}^{\infty} x'_{\nu} x_{\nu}$$
 for $x = (x_1, x_2, \ldots) \in l(p_1, p_2, \ldots)$.

Similarly $l(q'_1, q'_2, ...)$ is the conjugate space of $l(q_1, q_2, ...)$. Thus we obtain easily our assertion by the definition of the conjugate space.

Lemma 6. If $l(p_1, p_2, \ldots) \cong l(q_1, q_2, \ldots)$, then we have

$$\sum_{y=1}^{\infty} \alpha^{\frac{p_y q_y}{p_y - q_y}} < +\infty \quad for \ some \quad \alpha > 0.$$

Proof. If one of sequences p_{ν} and q_{ν} ($\nu = 1, 2, ...$) is bounded, then there is by Lemma 4 a positive number $\alpha < 1$ for which $\sum_{\nu=1}^{\infty} \alpha^{\frac{1}{|p_{\nu}-q_{\nu}|}} < +\infty$, and we have obviously $\alpha^{\frac{p_{\nu}q_{\nu}}{|p_{\nu}-q_{\nu}|}} \leq \alpha^{\frac{1}{|p_{\nu}-q_{\nu}|}}(\nu = 1, 2, ...)$. Thus, considering partial sequences, we recognize easily that we need only prove the case where $p_{\nu} \geq q_{\nu} \geq 2$ ($\nu = 1, 2, ...$). In this case, putting $\frac{1}{p_{\nu}} + \frac{1}{p_{\nu}'} = 1$, $\frac{1}{q_{\nu}} + \frac{1}{q_{\nu}'} = 1$, we have $p_{\nu}' \leq q_{\nu}' \leq 2$ ($\nu = 1, 2, ...$) and $l(p_{1}', p_{2}', ...) \cong l(q_{1}', q_{2}', ...)$ by Lemma 5. Therefore there is by Lemma 4 a positive number $\alpha < 1$ for which $\sum_{\nu=1}^{\infty} \alpha^{\frac{1}{q_{\nu}'-p_{\nu}'}} < +\infty$. Since $\frac{1}{q_{\nu}'-p_{\nu}'} = \frac{(p_{\nu}-1)(q_{\nu}-1)}{p_{\nu}-q_{\nu}}$, we obtain then $\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu}q_{\nu}}{p_{\nu}-q_{\nu}}} \leq \sum_{\nu=1}^{\infty} \alpha^{\frac{(p_{\nu}-1)(q_{\nu}-1)}{p_{\nu}-q_{\nu}}} < +\infty$.

§2. Proof of Theorem 2.

We assume firstly that $p_{\nu} > 1$ ($\nu = 1, 2, ...$) and $\lim_{\nu \to \infty} p_{\nu} = 1$. If a sequence of sequences

$$x_{\mu} = (x_{\mu,1}, x_{\mu,2}, \ldots) \in l(p_1, p_2, \ldots) \quad (\mu = 1, 2, \ldots)$$

is weakly convergent to 0, then we have obviously $\lim_{\mu \to \infty} x_{\mu,\nu} = 0$ for every $\nu = 1, 2, \ldots$, and $\sup_{\mu^{-1}, 2, \ldots} ||x_{\mu}|| < +\infty$.⁶⁾ Thus we can suppose further that $||x_{\mu}|| \leq 1$ ($\mu = 1, 2, \ldots$) and hence $m(x_{\mu}) \leq 1$.⁷⁾ If there is a positive number ε for which $m(x_{\mu}) > \varepsilon$ ($\mu = 1, 2, \ldots$), then we can find a partial sequence ν_{μ} ($\mu = 1, 2, \ldots$) such that

No. 9.]

⁵⁾ Ibid., Theorem 54.14.

⁶⁾ Ibid., Theorem 32.6.

⁷⁾ Ibid., Theorem 40.12.

$$\begin{split} &\sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{p_{\nu}} |x_{\mu,\nu}|^{p_{\nu}} > \varepsilon , \\ &p_{\nu} \leq 1 + \frac{1}{2^{\mu}} \quad \text{for} \quad \nu \geq \nu_{\mu} \end{split}$$

For $\frac{1}{p_{\nu}} + \frac{1}{p'_{\nu}} = 1$ ($\nu = 1, 2, ...$), putting $y_{\nu} = 0$ for $\nu < \nu_1$ and

$$y_{\nu} = |x_{\mu,\nu}|^{\frac{1}{p_{\nu'}}} \quad \text{for} \quad \nu_{\mu} \leq \nu < \nu_{\mu+1},$$

we have then $p'_{\nu} \geq 2^{\mu} + 1$ for $\nu \geq \nu_{\mu}$ and

$$\sum_{\nu=\nu_{\mu}}^{\nu_{\mu}+1-1} \frac{1}{p_{\nu}'} y_{\nu}^{p_{\nu}'} \leq \sum_{\nu=\nu_{\mu}}^{\nu_{\mu}+1-1} \frac{1}{2^{\mu}+1} |x_{\mu,\nu}|^{p_{\nu}} \leq \frac{1}{2^{\mu}} \sum_{\nu=\nu_{\mu}}^{\nu_{\mu}+1-1} \frac{1}{p_{\nu}} |x_{\mu,\nu}|^{p_{\nu}} \\ \leq \frac{1}{2^{\mu}} m(x_{\mu}) \leq \frac{1}{2^{\mu}} .$$

We obtain thus $\sum_{\nu=1}^{\infty} \frac{1}{p'_{\nu}} y_{\nu}^{\nu_{\nu}'} < + \infty$ and hence $(y_1, y_2, \ldots) \in l(p'_1, p'_2, \ldots)$). However we have for every $\mu = 1, 2, \ldots$

$$\sum_{\nu=1}^{\infty} |x_{\mu,\nu}| y_{\nu} \ge \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} |x_{\mu,\nu}|^{1+\frac{p_{\nu}}{p_{\nu}\nu}} \ge \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \frac{1}{p_{\nu}} |x_{\mu,\nu}|^{p_{\nu}} > \varepsilon$$

and this relation is impossible, because $l(p'_1, p'_2, ...)$ is the conjugate space of $l(p_1, p_2, ...)$ and

$$|x_{\mu}| = (|x_{\mu,1}|, |x_{\mu,2}|, \ldots) \quad (\mu = 1, 2, \ldots)$$

also is weakly convergent to $0.^{s}$ Therefore, considering partial sequences, we conclude easily $\lim_{\mu \to \infty} m(x_{\mu}) = 0$, and hence $\lim_{\mu \to \infty} ||x_{\mu}|| = 0.^{s}$

For $x = (x_1, x_2, \ldots) \in l(1, 1, \ldots)$ we have obviously

$$||x|| = m(x) = \sum_{\nu=1}^{\infty} |x_{\nu}|.$$

Thus, if $x_{\mu} = (x_{\mu, 1}, x_{\mu, 2}, \ldots) \in l(1, 1, \ldots)$ is weakly convergent to then we have $\lim_{\mu \to \infty} ||x_{\mu}|| = 0$.¹⁰ Therefore, considering partial sequences, we conclude Theorem 2.

Finally we remark that, putting

$$p_{\nu} = 1 + \frac{1}{\log (\log (\nu + 4))}$$
 ($\nu = 1, 2, ...$)

we have $\lim_{\nu \to \infty} p_{\nu} = 1$, but not $l(p_1, p_2, \ldots) \cong l(1, 1, \ldots)$ by Theorem 1, since we have for every $\alpha > 0$

$$\sum_{\nu=1}^{\infty} \alpha^{\frac{p_{\nu}}{p_{\nu-1}}} = \sum_{\nu=1}^{\infty} \alpha \left(\log \left(\nu + 4 \right) \right)^{\log a} = + \infty .$$

⁸⁾ H. Nakano: Discrete semi-ordered linear spaces (in Japanese), Functional Analysis, I (1947-9) 204-207. I. Halperin and H. Nakano: Discrete semi-ordered linear spaces, Canadian Jour. of Math., III (1951) 293-298, Lemma 1.

⁹⁾ C.f. 1), Theorem 40.5.

¹⁰⁾ J. Schur: Ueber lineare Transformationen in der Theorie der unendlichen Reihen, Jour. für reine und angew. Math. 151 (1921) 79-111. C. f. 8).