108. On Some Representation Theorems in an Operator Algebra. II.

By Hisaharu UMEGAKI. Mathematical Institute, Kyûshû University, Fukuoka. (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1951.)

3. Application to a topological group. We shall first prove Bochner's Theorem for a separable locally compact group by applying the Theorem 1 and its Remark 1, next prove the decomposition into irreducible factors for arbitray two sided unitary representation of a separable unimodular locally compact group, which has been called double unitary representation by R. Godement [8].

Theorem 3. Let G be a separable locally compact group, and $\varphi(s)$ be a continuous positive define function on G. Then

(11)
$$\varphi(s) = \int_{R} \chi(s, \lambda) d\sigma(\lambda)$$

where $\sigma(\lambda)$ is a suitable weight function which is an N-function of von Neumann [1], and $\chi(s, \lambda)$ are elementary continuous positive definite functions for almost all λ in R. When $\varphi(s)$ is a contral continuous p.d. (positive definite) function, these $\chi(s, \lambda)$ are also central elementary continuous p.d. functions.

Proof. Let \mathfrak{A} be L^1 -algebra on G, then \mathfrak{A} is a complete normed^{*}-algebra with an approximate identity. We put

$$\varphi(x) = \int_{G} x(s)\varphi(s)ds \quad (x \in \mathfrak{A})$$

the integration being by Haar measure ds on G, then clearly $\varphi(x)$ is a state on \mathfrak{A} . Therefore, by the Theorem 1 and its Remark 1 there exists a system of pure states $\chi(x, \lambda), \lambda \in N\sigma(\lambda)$ -null set, such that

$$\varphi(x) = \int_{R} \chi(x, \lambda) d\sigma(\lambda).$$

By Riesz-Markoff-Kakutani's Theorem, there are elementary continuous p.d. functions $\chi(s, \lambda)$, $\lambda \in N$, such that

$$\chi(x, \lambda) = \int_{G} x(s) \chi(s, \lambda) ds.$$

For these $\chi(s, \lambda)$, we shall prove the relation (11). Let $\{V_n\}$ be an enumerable neighbourhoods system of the unite of G. For any $t \in G$

$$\lim_{n\to\infty}\int \chi(s, \lambda)C_{\iota V_n}(s)ds/|V_n| = \chi(t, \lambda) \quad \text{a.e. } \sigma(\lambda)$$

[Vol. 27,

where $C_{tV_n}(s)$ be a caracteristic function of the set tV_n and $|V_n|$ be the volume for the Haar measure of G. Hence $\chi(t, \lambda)$ are $\sigma(\lambda)$ measurable for all $t \in G$. Let K be a subset of G and $a, b \in R$ (real number), we denote $M_{a,b,k}$ being a set of all $\lambda \in R - N$ such that $a \leq \chi(s, \lambda) \leq b$ for all s in K. Two topologies τ_1 and τ_2 on R are defined by the families of the subsets in $R\{M_{a,b,s} | a, b \in R, s \in G\}$ and $\{M_{a,b,k} | a, b \in R, K$ being runing over on the family of all compact set in $G\}$, respectively. Since G is separable, every Borel set in R_{τ_2} is also a Borel set in R_{τ_1} , and the $\sigma(\lambda)$ -measureable. Moreover $\chi(s, \lambda)$ is continuous on the product topological space $G \times R_{\tau_2}$, hence $\chi(s, \lambda)$ is measurable for the product measure of G and R. By Fubini's Theorem, for all $x \in \mathfrak{A}$

(12)
$$\varphi(x) = \int_{R} \int_{G} x(s) \chi(s, \lambda) ds d\sigma(\lambda) = \int_{G} \int_{R} x(s) \chi(s, \lambda) d\sigma(\lambda) ds.$$

Therefore we obtain the relation (11). On the case of central continuous p.d. function, we may prove in another paper with the decomposition of trace in C^* -algebra.

Remark 2. As far as we know, the Bochner's Theorem for non-separable locally compact group has never been shown. R. Godement has given at a weak form (cf. [7]). Let G be a such group, Γ be a set of all elementary continuous p.d. functions and their weak limits. For any continuous p.d. function $\varphi(s)$, there exists a positive Radom measure $\mu(\cdot)$ such that

$$\int_{a} x(s)\varphi(s)ds/\rho(s)^{1/2} = \int_{F} \int_{a} x(s)\chi(s)ds/\rho(s)^{1/2} d\mu(\chi)ds$$

for all $x \in L^1$. The weak topology and compact open topology are coincide in I' (cf. H. Yoshizawa [11]). Then, we have

$$\varphi(s) = \int_{\Gamma} \chi(s) d\mu(\chi).$$

But, on this case it is essential weak. For, as Godement has seen that Γ contains a p.d. function different from the elementary p.d. function. In his central group (cf. [10]), however, it may be held.

The uniform closure R(G) of the collection of the operators of the form L_f (with $f \in L^1(G)$) is a C*-algebra $(L_fg = f*g, g \in L^2(G))$ and its * being the convolution). We do not know that the complete relation between of the representations of R(G) and G. But we know in L'-algebra that there is a one-to-one correspondence between a continuous representation of $L^1(G)(=\mathfrak{A})$ say) and a continuous unitary representation of G, that is, $\{U_x, \mathfrak{H}\}$ be a continuous representation of \mathfrak{A} , then there exists a continuous unitary representation $\{U_s, \mathfrak{H}\}$ of G such that

(13)
$$U_{x}\xi = \int_{G} x(s) U_{s}\xi ds, \quad \xi \in \mathfrak{H}$$

where the integration is Banach space valued integral, and the converse correspondence be held by the same relation (13). Since the Theorem 2 can be applied for L^1 -algebra², we have

Theorem 4. Let G be a separable unimodular locally compact group. A normal two-sided continuous unitary representation of G is a directed integral of a system of irreducible such representations of $G^{(3)}$

Proof. Give representation be $\{U_s, V_s, j, \mathfrak{H}\}$. For any $x \in \mathfrak{A}$ and any $\xi \in \mathfrak{H}$, we put

(14)
$$U_{x}\xi = \int x(s)U_{s}\xi ds, \quad V_{x}\xi = \int x(s^{-1})V_{s}\xi ds$$

where the integration being same way in (13). Then $\{U_x, V_x, j, \mathfrak{H}\}$ is a two-sided continuous representation of \mathfrak{A} . For, the conjugate linear transformation j is commute with the strong integration, that is, $(jU_x j\xi, \eta) = (j\eta, U_x j\xi) = \int \overline{x(s)}(j\eta, U_s j\xi) ds = \int \overline{x(s)}(jU_s j\xi, \eta) ds$ $= \int \overline{x(s)}(V_s\xi, \eta) ds = (V_{x*}\xi, \eta)$, hence $jU_x j = V_{x*}$ and the other conditions are followed by $U_sV_t = V_tU_s$ and $V_{st} = V_tV_s$. In order to decompose $\{U_s, V_s, j, \mathfrak{H}\}$ into irreducible factors, first we shall prove that $\{U_x, V_y | x, y \in \mathfrak{A}\}' = \{U_s, V_t | s, t \in G\}'$. If $BU_s = U_sB$ and BV_t $= V_tB$, then since bounded linear operators are commute with the strong integration,

$$BU_{s}\xi = B \int_{a} x(s) U_{s}\xi ds = \int_{a} x(s) BU_{s}\xi ds = \int_{a} x(s) U_{s}B\xi ds$$

hence $BU_x = U_x B$ and by the same way $BV_x = V_x B$. The converse be possible to prove by the continuity of the representation $\{U_s, V_s, j, \mathfrak{H}\}$ and similar way above one. Thus, when we consider the decomposition of the Theorem 2 for L'-algebra \mathfrak{A} , $\{U_x, V_x, j, \mathfrak{H}\}$ is a directed integral of a system of the irreducible two-sided representations $\{U_x(\lambda), V_x(\lambda), j(\lambda), \mathfrak{H}\}$, $\lambda \in N\sigma(\lambda)$ -null set. Since $\{U_x(\lambda), V_x(\lambda), j(\lambda), \mathfrak{H}\}$ are continuous representations, there exist two-sided continuous unitary representations $\{U_s(\lambda), V'_s(\lambda), j(\lambda), \mathfrak{H}\}$ of G for

¹⁾ $\rho(s)$ is the measure factor of the Haar measure of G.

²⁾ It is obvious by the same reason with the statement of Remark 1. The two-sided representation will be possible to define in an abstract * algebra, we shall discuss in another paper.

³⁾ This theorem also holds for any such representation (being not always normal) onto a separable Hilbert space.

⁴⁾ It can be proved by the same way with (14).

H. UMEGAKI.

 $\lambda \in N$ such that

$$U_x(\lambda)\xi_{\lambda} = \int_G x(s)U_s(\lambda)\xi_{\lambda}ds, \ V_x(\lambda)\xi_{\lambda} = \int_G x(s^{-1})V_s(\lambda)\xi_{\lambda}ds$$

for all $x \in \mathfrak{A}$ and $\xi_{\lambda} \in \mathfrak{H}_{\lambda}$. Then it remains to prove that the representation $\{U_s, V_s, j, \mathfrak{H}\}$ is a directed integral of the system of irreducible two-sided unitary representations $\{U_s(\lambda), V_s(\lambda), j(\lambda), \mathfrak{H}\}$. We have

(15)
$$(U_x\xi, \eta) = \int_G x(s)(U_s\xi, \eta) \, ds,$$

the left hand of (15) $= \int_{\mathcal{R}} (U_x(\lambda)\xi_{\lambda}, \eta_{\lambda})d\sigma(\lambda)$ $= \int_{\mathcal{R}} \int_{\mathcal{R}} x(s)(U_s(\lambda)\xi_{\lambda}, \eta_{\lambda})ds \, d\sigma(\lambda).$

Now, we can apply the proof of theorem 3 for these functions $(U_s(\lambda)\xi_{\lambda}, \eta_{\lambda})$ instead of $\chi(s, \lambda)$ (cf. (12)) and hence can use Fubini's Theorem, so (15) is equal to

$$\int_{\alpha}\int_{\mathcal{R}} x(s)(U_{s}(\lambda)\xi_{\lambda}, \eta_{\lambda})d\sigma(\lambda)\,ds.$$

As we have used sometimes (e.g. the equation (12))

$$\int_{G} x(s)(U_{s}\xi, \xi) \, ds \, d\sigma(\lambda) = \int_{G} \int_{R} x(s)(U_{s}(\lambda)\xi_{\lambda}, \xi_{\lambda}) d\sigma(\lambda) \, ds$$

for any x(s) in \mathfrak{A} . Thus,

$$(U_s\xi, \xi) = \int_R (U_s(\lambda)\xi_\lambda, \xi_\lambda) d\sigma(\lambda)$$

for any $s \in G$. Since $\xi \in \mathfrak{H}$ is arbitrary, it completes the proof.

Add in proofs. From the equation (5) in the first paper I,P. 330, we have stated without proof that almost all $\{U_x(\lambda), \mathfrak{H}_{\lambda}\}$ are representations of \mathfrak{A} . Now we may prove this. Since \mathfrak{A} is separable, there exists an enumerable dense self-adjoint subset $\mathfrak{A}_0 = \{X_n\}$ of \mathfrak{A} such that $U_{x_n} \sim \sum U_{x_n}(\lambda)$ and $||| U_{x_n}(\lambda) ||| \leq ||| U_{x_n} |||, U_{x_m^{x_n}}(\lambda) =$ $U_{x_m}(\lambda) U_{x_n}(\lambda), U_{x_n^*}(\lambda) = U_{x_n}(\lambda)^*$ for $\lambda \in N_{mn}(\sigma(\lambda)$ -null set). Put $N = \bigcup N_{mn}$. For any $x \in \mathfrak{A}$, there exists a sequence $\{x'_n\} \subset A_0$ such that $x'_n \to x$ in \mathfrak{A} . Since $||| U_{x'_n} - U_x ||| \leq || x'_n - x || \to 0$ and $||| U_{x'_n}(\lambda) - U_{x'_n}(\lambda) ||| \leq ||| U_{x'_n} U_{x'_n} |||$ for $\lambda \in N$, we can find a bounded operator $A(\lambda)$ on $\mathfrak{H}_{\lambda}(\lambda \in N)$ which is an uniform limit of $U_{x'_n}(\lambda)$. Hence $A(\lambda) = U_x(\lambda)$ for $\lambda \in N$, and it may be proved $\{U_x(\lambda), \mathfrak{H}^\lambda\} (\lambda \in N)$ being representation.

Next, we have concluded from (8) that j_{λ} is our j-involution a.e. $\sigma(\lambda)$, there we had omitted the precise proof of the term of a.e. $\sigma(\lambda)$.

504

No. 9.]

Throughout these papers I and II, we have described only summary notes. Their details will be descussed in more general from with other statements, it will appear elsewhere.

Bibliography.

1. J. von Neumann: On Rings of Operators. Reduction Theory. Ann. of Math. 50 (1949), pp. 401-485.

2. I. E. Segal: Irreducible Representations of Operator Algebra; Bull. Amer. Math. Soc. 48 (1947). 73-88.

3. M. Nakamura: The Two-side Representations of an Operator Algebra. Proc. Japan Acad. 27 (1951), 4, 172-176.

4. M. Nakamura and Y. Misono: Centering of an Operator Algebra appear in Tohoku Math. J.

5. F. I. Mautner: Unitary Representations of Locally Compact Groups. I. Ann. of Math. 51 (1950), 1-25.

6. F. I. Mautner: Unitary Representations of Locally Compact Groups. II. Ann. of Math. **52** (1951), 528-555.

7. R. Godement: Les fonctions de type positif et la théorie does groupes. Trans. Amer. Math. Soc. **63** (1948), 1-89.

8. R. Godement: Sur la theorie des representations unitaires. Ann. of Math. 53 (1951), 68-124.

9. R. Godement: Sur la théorie des caractéres. I et II, C. R. Paris 229 (1949). 976-979, 1050-1051.

10. R. Godement: Analyse harmonique dans les groupes centraux I, ibid., 225 (1949). 19-21.

11. H. Yoshizawa: On Some Type of Convergence of Positive Definite Functions. Osaka Math. J. 1 (1949), 90-94.