632 [Vol. 27,

138. On the Simple Extension of a Space with Respect to a Uniformity. IV.

By Kiiti Morita.

Tokyo University of Education. (Comm. by K. Kunugi, M.J.A., Dec. 12, 1951.)

The purpose of the present note is to show that any regular T_1 -space containing a regular T_1 -space R as a dense subset can be obtained by constructing the simple extension of R with respect to some regular uniformity 1 , and to discuss some other extensions related to the simple extensions.

§ 1. Regular uniformity.

Theorem 1. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a regular uniformity of a space R agreeing with the topology. Then the simple extension R^* of R with respect to $\{\mathfrak{U}_{\alpha}\}$ is characterized as a space S with the following properties:

- (1) S contains R as a subspace.
- (2) $\{S-\overline{R-G}; G \text{ open in } R\}$ is a basis of open sets for S.
- (3) Each point of S-R is closed.
- (4) $\mathfrak{B}_a = \{S \overline{R U}; U \in \mathfrak{U}_a\}$ is an open covering of S.
- (5) $\{S(x, \mathfrak{D}_a); \alpha \in \Omega\}$ is a basis of neighbourhoods at each point x of S-R.
- (6) S is complete with respect to the uniformity $\{\mathfrak{D}_{\alpha}; \alpha \in \Omega\}$. Here the bar indicates the closure operation in S.

Proof. It is proved by I, Theorem 9 that R^* has the properties (1)-(6). Conversely, let S be a space with the properties (1)-(6). For any point x of S-R, $\{S(x, \mathfrak{B}_a) \cdot R : \alpha \in \Omega\}$ is a Cauchy family with respect to $\{\mathfrak{U}_a\}$ because of the regularity of $\{\mathfrak{U}_a\}$, and hence for any $\alpha \in \Omega$ there exists $\beta, \gamma \in \Omega$ and $U_a \in \mathfrak{U}_a$ such that $S(S(x, \mathfrak{P}_{\beta}) \cdot R, \mathfrak{V}_{\gamma}) \subset U_a$. Hence we have $\overline{S(x, \mathfrak{P}_{\beta}) \cdot R} \subset S(S(x, \mathfrak{P}_{\beta}) \cdot R, \mathfrak{P}_{\gamma}) \subset S - \overline{R} - \overline{U_a} \subset S(x, \mathfrak{P}_a)$.

Since $\{\mathfrak{V}_a\}$ agrees with the topology of S, $\{S(x,\mathfrak{V}_a)\cdot R; \alpha\in \mathcal{Q}\}$ is a vanishing Cauchy family of R with respect to $\{\mathfrak{U}_a\}$ such that $x=H\overline{S(x,\mathfrak{V}_a)\cdot R}$. Therefore Theorem 1 follows immediately from II, Theorem 1.

Theorem 2. Let R be a regular T-space, and let S be any regular T-space such that S contains R as a dense subspace and each point of S-R is closed. Then there exists a homeomorphism φ of S

¹⁾ K. Morita: On the simple extension of a space with respect to a uniformity. I, II, III, Proc., 27 (1951), 65-72; 130-137; 166-171. These notes shall be cited with I, II, III respectively. We make use of the same terminologies and notations as in these notes.

onto the simple extension R^* of R with respect to a regular T-uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$, agreeing with the topology, such that φ leaves each point of R invariant. Here $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ can be obtained as $\mathfrak{U}_{\alpha} = \{W \cdot R; W \in \mathfrak{W}_{\alpha}\}$ from any regular T-uniformity $\{\mathfrak{W}_{\alpha}; \alpha \in \Omega\}$ of S, agreeing with the topology, such that S is complete with respect to $\{\mathfrak{W}_{\alpha}; \alpha \in \Omega\}$.

Remark 1. As $\{\mathfrak{D}_{\alpha} : \alpha \in \Omega\}$ in Theorem 2 we may take the family of all open coverings of S by I, Theorems 1 and 8.

Remark 2. It is to be noted that there are completely regular T_1 -spaces R and S such that S is not homeomorphic to the simple extension of R with respect to any completely regular T-uniformity although S contains R as a dense subspace.

Proof of Theorem 2. Let $\{\mathfrak{W}_{\alpha}; \alpha \in \Omega\}$ be a regular T-uniformity of S, agreeing with the topology, such that S is complete with respect to $\{\mathfrak{W}_{\alpha}\}$. If we put $\mathfrak{U}_{\alpha} = \{W \cdot R; W \in \mathfrak{W}_{\alpha}\}$ for each $\alpha \in \Omega$, then $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ is a regular T-uniformity of R agreeing with the topology. We shall remark that for any open set G of S we have

$$G \subset S - \overline{R - GR} \subset \overline{G}$$
,

where the bar indicates the closure operation in S. The first relation is evident, since $R-G\cdot R=(S-G)\cdot R$, and we have $S=\overline{R}=\overline{R-G\cdot R}+\overline{G}$ by the additivity of the closure operation.

Therefore the family $\{S-\overline{R-G}; G \text{ open in } R\}$ is a basis of open sets for S, and, if we put $\mathfrak{B}_{\alpha}=\{S-\overline{R-U}; U\in \mathfrak{U}_{\alpha}\}$, \mathfrak{B}_{α} is an open covering of S and the uniformity $\{\mathfrak{B}_{\alpha}: \alpha\in \Omega\}$ is equivalent to $\{\mathfrak{B}_{\alpha}: \alpha\in \Omega\}$. This completes our proof by Theorem 1.

Theorem 3. Let R be a completely regular T-space, and let S, T be the simple extension of R with respect to completely regular T-uniformities $\{\mathfrak{U}_a\}$, $\{\mathfrak{V}_\lambda\}$ respectively, where both uniformities agree with the topology and consist of finite open coverings (whence follows that S, T are bicompact). In order that there exist a continuous mapping f from S onto T such that f(S-R)=T-R and f(x)=x for every point x of R, it is necessary and sufficient that for any \mathfrak{V}_λ of $\{\mathfrak{V}_\lambda\}$ there exist some \mathfrak{V}_α of $\{\mathfrak{V}_\alpha\}$ which is a refinement of \mathfrak{V}_λ .

Proof. The sufficiency follows from II, Theorem 3 (cf. also the proof of III, Theorem 5). We shall prove the necessity. Let $\mathfrak{V}_{\lambda} = \{V_1, \dots, V_m\}$ be any covering of $\{\mathfrak{V}_{\lambda}\}$. Then $\{T - \overline{R} - \overline{V}_i; i = 1, 2, \dots, m\}$ is an open covering of T, and hence $\{S - f^{-1}(\overline{R} - \overline{V}_i); i = 1, \dots, m\}$ is also an open covering of S. Since $\overline{R} - \overline{V}_i \subset f^{-1}(\overline{R} - \overline{V}_i)$, $\{S - \overline{R} - \overline{V}_i; i = 1, \dots, m\}$ is an open covering of S. The remark at the end of II, § 2 shows that thore exists a refinement $\mathfrak{U}_a \in \{\mathfrak{U}_a\}$ of \mathfrak{V}_{λ} .

§ 2. Strong agreement with the topology. A uniformity $\{U_{\alpha}; \alpha \in \Omega\}$ of a space R is said to agree strongly with the topology, if $\{S(S(x, \mathbb{U}_{\alpha}), \mathbb{U}_{\beta}); \alpha, \beta \in \Omega\}$ is a basis of neighbourhoods at each

point x of R. Then we have

Lemma 1. In case $\{\mathfrak{U}_a\}$ is a regular uniformity, $\{\mathfrak{U}_a\}$ agrees strongly with the topology if and only if it agrees with the topology in the ordinary sense.

As an application of this notion we mention

Theorem 4. Let R be a T_1 -space. In order that R be metrizable it is necessary and sufficient that there exist a uniformity $\{\mathfrak{U}_n; n=1, 2, \cdots\}$ which consists of a countable number of open coverings and agrees strongly with the topology.

Indeed Theorem 4 is shown to be a reformulation of a result due to A.H. Frink 2).

§ 3. The regular extension with respect to a uniformity. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a uniformity of a space R. A family $\{X_{\lambda}\}$ of subsets of R is called a Cauchy family of rank $n(n \geq 1)$ if it has the finite intersection property and for any $\alpha \in \Omega$ there exist $\beta_1, \dots, \beta_n \in \Omega$, $U_{\alpha} \in \mathbb{U}_{\alpha}, X_{\lambda}\{X_{\lambda}\}$ such that

$$S(S(\cdots(S(X_{\lambda}, \mathfrak{U}_{\beta_1}), \cdots), \mathfrak{U}_{\beta_{n-1}}), \mathfrak{U}_{\beta_n}) \subset U_a$$
.

Any Cauchy family of rank 2 is necessarily a Cauchy family of rank $n(n \ge 3)$ and a Cauchy family in the ordinary sense (I, § 3). We denote by R^+ the subspace of the simple extension R^* of R, which is made up of the points of R^*-R represented by equivalence classes of vanishing Cauchy families of rank 2 and of the points of R. This space R^+ was introduced by J. Suzuki and investigated.³⁾

Lemma 2. Each point of R^+-R is a regular point. More precisely $\{S(S(x, \mathfrak{U}_a^+), \mathfrak{U}_{\beta}^+); \alpha, \beta \in \Omega\}$ is a basis of neighbourhoods at x of R^+-R where $\mathfrak{U}_a^+=\{U^*\cdot R^+; U\in \mathfrak{U}_a\}$.

Proof. If $\{X_{\lambda}\}$ is a vanishing Cauchy family of rank 2 and belongs to x, then $S(S(X_{\lambda}, \mathfrak{U}_{\alpha}) \mathfrak{U}_{\beta}) \subset G$ implies $S(S(x, \mathfrak{U}_{\alpha}^{+}), \mathfrak{U}_{\alpha}^{+}) \subset G^{+}$, where $G^{+} = G^{*} \cdot R^{+}$. This proves Lemma 2.

Theorem 5. If $\{\mathfrak{U}_a; \alpha \in \Omega\}$ is a uniformity of a space R which agrees strongly with the topology, then R^+ is a regular space.

In this case R^+ is called the regular extension of R with respect to the uniformity $\{\mathfrak{U}_{\alpha}\}$.

Proof. For a point x of R, $S(S(x, \mathfrak{U}_a), \mathfrak{U}_{\beta}) \subset G$ implies $S(S(x, \mathfrak{U}_a^+), \mathfrak{U}_{\beta}^+) \subset G^+$. This, together with Lemma 2, proves Theorem 5.

In case $\{\mathfrak{U}_a\}$ is a regular uniformity R^+ coincides with R^* , as is shown by Suzuki. Hence we obtain the following theorem from Theorem 2.

Theorem 6. Let R be a regular T-space, and let S be any re-

²⁾ A. H. Frink: Distance functions and the metrization problems, Bull. Amer. Math. Soc., 43 (1937), 133-142, Theorem 4.

³⁾ J. Suzuki: On the metrization and the completion of a space with respect to a uniformity, Proc., 27 (1951), 217-223.

gular T-space such that S contains R as a dense subset and each point of S-R is closed. Then S can be obtained as the regular extension of R with respect to a T-uniformity $\{\mathfrak{U}_a\}$ agreeing strongly with the topology.

§ 4. The bicompact extension with respect to a uniformity. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a uniformity of a space R. An ultrafilter $\{X_{\lambda}\}$ in R is said to be vanishing if $\Pi \overline{X}_{\lambda} = 0$. Two ultrafilters $\{X_{\lambda}\}$ and $\{Y_{\mu}\}$ in R are said to be equivalent, if for any $X_{\lambda} \in \{X_{\lambda}\}$ and any $\alpha \in \Omega$ there exist $Y_{\mu} \in \{Y_{\mu}\}$ and $\beta \in \Omega$ such that $S(Y_{\mu}, \mathfrak{U}_{\beta}) \subset S(X_{\lambda}, \mathfrak{U}_{\alpha})$, and conversely for any $Y_{\mu} \in \{Y_{\mu}\}$ and any $\beta \in \Omega$ there exist $X_{\lambda_0} \in \{X_{\lambda}\}$, $\gamma \in \Omega$ such that $S(X_{\lambda_0}, \mathfrak{U}_{\gamma}) \subset S(Y_{\mu}, \mathfrak{U}_{\beta})$. This relation is clearly an equivalence relation. We consider all the equivalence classes of vanishing ultrafilters in R and denote the set of these classes by D. For any open set G of R we define the set G^b as follows: G^b consists of all the points of G and of all the points x of D such that for any ultrafilter $\{X_{\lambda}\}$ belonging to x there exist some $X_{\lambda} \in \{X_{\lambda}\}$ and $\alpha \in \Omega$ satisfying $S(X_{\lambda}, \mathfrak{U}_{\alpha}) \subset G$. Then we have (cf. I, § 3)

Lemma 3. $G^b \cdot R = G$, $O^b = 0$, $R^b = R + D$.

Lemma 4. $G \subset H$ implies $G^b \subset H^b$.

Lemma 5. $G_1 \cdots G_m = 0$ implies $G_1^b \cdots G_m^b = 0$.

Lemma 6. If $\{\mathfrak{U}_a\}$ is a T-uniformity, then $(G \cdot H)^b = G^b \cdot H^b$.

We take $\{G^b$; open in $R\}$ as a basis of open sets of R^b . Then we have

Lemma 7. The simple extension R^* of R is a subspace of R^b .

Lemma 8. For a point x of $R^b - R$, $\{S(X_\lambda, \mathfrak{U}_\alpha)^b ; \lambda \in \Lambda, \alpha \in \Omega\}$ is a basis of neighbourhoods at x, where $\{X_\lambda; \lambda \in \Lambda\}$ is any ultrafilter belonging to x.

Lemma 9. For a vanishing ultrafilter $\{X_{\lambda}\}$ belonging to a point x of R^b-R we have $x \in II \overline{X}_{\lambda}$ in R^b . In case $\{\mathfrak{U}_a\}$ is completely regular we have $x = II \overline{X}_{\lambda}$.

Lemma 10. If R is a T-space and $\{\mathfrak{U}_a\}$ is a T-uniformity, then R^b is a T-space. Furthermore, if R is a T_0 -space, so is R^b .

Now we shall prove

Theorem 7. If $\{\mathfrak{U}_a\}$ agrees strongly with the topology of R, then R^b is bicompact.

In this case R^b is called the bicompact extension of R with respect to $\{\mathfrak{U}_a\}$.

Proof. Let $\{H_{\lambda}^{b}; \lambda \in \Lambda\}$ be any open covering of R^{b} , where H_{λ} are open sets of R. If we put $C_{\lambda} = R - H_{\lambda}$, then there exist $\lambda_{i} \in \Lambda$, $\alpha_{i} \in \Omega$ $(i=1, 2, \dots, n)$ such that

To prove this suppose that $\{S(C_{\lambda}, \mathcal{U}_{\alpha}); \lambda \in \Lambda, \alpha \in \Omega\}$ has the finite intersection property. If a point x of R belongs to every $\overline{S(C_{\lambda}, \mathcal{U}_{\alpha})}$,

then we have $S(x, \mathfrak{U}_{\beta})$. $S(C_{\lambda}, \mathfrak{U}_{\alpha}) \neq 0$ and hence $S(S(x, \mathfrak{U}_{\beta}), \mathfrak{U}_{\alpha}) \cdot C_{\lambda} \neq 0$, and consequently $x \in II$ C_{λ} in R, which contradicts the relation that $IIC_{\lambda} \subset II_{\lambda} \subset \overline{C}II(R^{b}-H_{\lambda}^{b})=0$ in R^{b} . Hence if we construct an ultrafilter $\{Z_{\nu}\}$ containing $\{S(C_{\lambda}, \mathfrak{U}_{\alpha})\}$, then $\{Z_{\nu}\}$ must be vanishing and belongs to some point z of $R^{b}-R$. Since $Z_{\nu} \cdot S(C_{\lambda}, \mathfrak{U}_{\alpha}) \neq 0$ implies $S(Z_{\nu}, \mathfrak{U}_{\alpha}) \cdot C_{\lambda} \neq 0$, we have $z \in II\overline{C}_{\lambda} \subset II(R^{b}-H_{\lambda}^{b})$ in R^{b} by Lemma 8, but this is a contradiction since $\{H_{\lambda}^{h}\}$ is a covering of R^{b} . Thus the existence of λ_{i} , α_{i} satisfying (*) is proved.

Now let us put $A_i=R-S(C_{\lambda i}, \mathfrak{U}_{\alpha i})$, $i=1, 2, \dots, n$. Then it is easily shown that $\{S(A_i, \mathfrak{U}_{\alpha i})^b; i=1, 2, \dots, n\}$ is a covering of R^b . Since $S(A_i, \mathfrak{U}_{\alpha i}) \subset R-C_{\lambda i}=H_{\lambda i}$ the bicompactness of R^b is thus proved.

Let us put for a subset A of R and for $\alpha \in \Omega$ $\mathfrak{M}(A, \alpha) = \{S(A, \mathfrak{U}_{\alpha}), R - \overline{A}\}.$

Then we have

Lemma 11. \mathbb{I}_a is a refinement of $\mathfrak{M}(A, \alpha)$ for any subset A of R, and $S(A, \mathbb{I}_a) = S(A, \mathfrak{M}(A, \alpha))$.

Theorema 8. If $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}$ is a uniformity agreeing strongly with the topology, so is the uniformity $\{\mathfrak{M}(A,\alpha); \alpha \in \mathcal{Q}, A \subset R\}$, and the simple extension of R with respect to $\{\mathfrak{U}_{\alpha}\}$ is imbedded in the simple extension of R with respect to $\{\mathfrak{M}(A,\alpha)\}$, and moreover the bicompact extensions of R with respect to both uniformities are identical.

Proof of Theorem 8 is obvious from Lemma 11.

Lemma 12. The intersection of coverings $\mathfrak{M}(A_i, \alpha)$, $i=1, 2, \cdots$, n is a Δ -refinement of a covering $\{S(A_i, \mathbb{U}_a); i=1, 2, \cdots, n\}$, where $A_1 + \cdots + A_n = R$.

Lemma 13. If \mathfrak{U}_{β} is a Δ -refinement of \mathfrak{U}_{α} , a covering $\{S(S(A, \mathfrak{U}_{\beta}), \mathfrak{U}_{\beta}), S(R-S(A, \mathfrak{U}_{\beta}), \mathfrak{U}_{\beta})\}$ is a refinement of a covering $\mathfrak{M}(A, \alpha)$.

Theorem 9. If $\{\mathbb{U}_a\}$ is a completely regular uniformity of R agreeing with the topology, so also is the uniformity which consists of all the finite open coverings of the form: $\{S(A_i, \mathbb{U}_a); i=1, 2, \cdots, n\}$ where $\alpha \in \Omega$ and $A_1 + \cdots + A_n = R$, and the simple extension of R with respect to this uniformity or the uniformity $\{\mathfrak{M}(A, \alpha)\}$ defined in Theorem 8 is identical with the bicompact extension of R with respect to $\{\mathbb{U}_a\}$.

Proof. The first part is obvious from Lemmas 12, 13. The second part may be proved by virtue of Theorems 1 and 7 or directly.

In case $\{\mathfrak{U}_a\}$ is a completely regular T-uniformity agreeing with the topology, it is easily seen that R^b coincides with the bicompactification of R recently given by P. Samuel ⁴⁾. It is an open problem whether the regular extention of R with respect to the uniformity mentioned in Theorem 8 or 9 is r-closed ⁵⁾ or not, in case $\{\mathfrak{U}_a\}$ is merely a T-uniformity agreeing strongly with the topology of R.

⁴⁾ P. Samuel: Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc., 64 (1948), 100-132.
5) P. Alexandroff and H. Hopf: Topologie I, p. 90, footnote 1.