No. 10.] 627

137. On Completely Additive Classes of Sets with
Respect to Carathéodory’s Outer Measure.

By Shizu ENomoToO.
(Comm. by K. KuNuGl, M.J.A., Dee. 12, 1951.)

The purpose of this paper is to investigate the relations be-
tween completely additive classes of sets with respect to Carathé-
odory’s outer measure. This investigation has its source in an
article by the author: On the notion of measurability”.

1. Let X be an abstract space (an arbitrary set), and x be an
outer measure of Carathéodory on X, i.e., p is a real valued func-
tion p(A4) defined for each subset A of X satisfying the following
conditions :

i) 0<m(4) L+, ii) If 4;CTA; then p(4) < p(A4,). iii) For
any sequence of sets {4.}(4,<TX) it holds the relation pu(\/2..14.) <

©  w(4,). iv) w(0) = 0 for the empty set O.

We denote by €(w) the class of all measurable sets in the sense
of Carathéodory with respect to the outer measure p. We assume
further that there exists a sequence of sets {K.,} such that K.e €(p),
K, Ky, UK, = X and p(K,) <+ . We call such a sequence
{K.} a fundamental finite sertes. If p(X)<+ o, then we can take
K, = X.

We say that a class of sets M is completely additive, when IN
satisfies the following conditions :

a) If A€, then Ui A, e M. b) If AeIN, then CAe .

We say that Wt is finitely additive, when in a) \/2, is replaced
by \Ui-1.

We say that I is p-completely additive (abbreviated g-c.a.),
when I is completely additive and the relation w(\/&2, (4;:~K,))=
S (A~ K,) (for all n) holds, if A,€M, A;~A4; = 0 (i==j), and {K..}
is a fundamental finite series. We say that I is p-finit ly additive
(abbreviated p-f.a.), when IR is finitely additive and the above re-
lation holds if \/, and 3} are replaced by \/:.: and 3%, resp.

These definitions are independent of the choice of the fundamental
finite series {K,} (by Lemma 4), and coincide with the ordinary one
if p(\JA:;) <+ o (by Lemma 8).

Let R(p) be the class of all sets A such that

MEK.~A) = p(K)—m(K.~CA)  for all n,

1) By S. Enomoto, this proc. vol. 27, No. 5, p. 208. It will be denoted by [E].

2) A set E is said to be measurable in the sense of Carathécdery when
#n(A)=u(A~E)+u(A~CE) holds for all ACX.

3) CA denotes the compliment of A: CA=X—A.
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which is independent of the fundamental finite series {K.} (by
Lemma 4).

By G(z) we denote the class of all sets E such that

(0) p(A)=m(A~E)+r(A~CE) for all AeR(p),
where we can assume p(4)<+ . We obtain easily:

Theorem 1. It hold the relations € (k) CE () TR k) and M
CR(w) for every p-c. (f.) a. class M.

It will be found remarkable that €(ux), in stead of €(w), plays
a central role (Cf. Theorem 2 and Theorem 7).

2. Lemma 1. Let {K.} be a fundamental finite series, then
for an arbitrary set AZX we have 1i+m wA~K,) = p(A).

Proof : Easy. Cf. Halmos: Measure theory, §11, Theorem B.

Lemma 2. If it hold AC\J/2uE,;, p(A) = S5ip(AnE) <+ o,
#(A) = p(A~F) + p(A~CE) and p(A~E~F) + p(A~E;~ACF)=
wANE,) for all i, then it holds: w(A~F) = S2m(AnE.~F).

Proof. w(A) =p(AnF)+p(A~CRH SR w(ANEANF)+
S MAAEACE) = Si2m(A~E) = p(A)<+ . Therefore p(AnF)
=> UM AnE;~F).

Lemma 3. If 1t holds p(UgiA4) = 2p(d) <+, where
AinA; =0 (isfkj), then it holds for any HeG(p): u(\JUi(A:~ H))
=2(4’i1/~"(A¢f'\H)-

Proof, Put in Lemma 2 A =\/2,4, E,= A, and F = H.

Lemma 4. If it holds p(\/2(4:~K,)) = S pn(4:~ K,) for all
n, where A;:~nA; =0 (i=k7), for a fundamental finite series {K.},
then it holds for any He@(u): u(\/)72(A:~H)) = S 2.u(A:~ H).

Proof. By Lemma 3 and Lemma 1.

3. In the sequel we shall use for simplicity the notation w.(A4)
in stead of #(A~K,). If we prove an equality for u, then we
shall get the equality for u itself (by Lemma 1).

Theorem 2. The class €G(u) 7s p-c. a..

Proof. 1° It is clear that, if EFe@(x) then CEeE(x).

2° If E€@(r) and AeR(x), then A~EeR(p). Because: p(K,)
+1.(C(AnE)) Z p#(K,). Therefore u(K,) = pr.(Ar E)+p.(C(AnE)).

3° If E, Fe@(u), then E~Fe@G(u) and EvwFeE(p). Because:
For an arbitrary set AeR(x) such that w(4)<+ o, we have u(4)
—u(A~CEAF) = wWANE) + p(A~CE) — p(A~C(EA~F))
>MA~EAF) + (A~NEACF) + p(AnCE) — f(AnC(E~F)~E)
—mANC(E~F)~CE) = p(An(E~F)), hence p(A) = (A~ (E~T))
+p(ANC(EA~F)) = (A). Therefore E~Fe@(u), and from 1°
EVFe@(p).

4) Cf. the remark at ths end of this paper.
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4° If AeR(w), E, Fe@(r) and E~F =0, then p(A~(EvE)
=w(A~E)+(A~F). Because: Put A~ (E“F) in stead of A in (0).

5° If E,eC(p) and E;~E; =0 (ig=)), then p(\UZ.E)
=i (E). Because: By 4° STupu(E) = p(UrE) S p(\JiaE),
hence >3Lip(E)Su(UeaEy) < S Rap(Ey).

6° If F,eG(w) then U2 £,eE(w). It suffices to prove this only
when E;~E; =0 (i=kj). For any AeR(p) (#(A)<+ =) we have
MA) — (A~C(JLED)) = m(A) — (AnC(UEy)) = (A (Vi EY)
=24-M(ANE) (by 4°), then p(4)—p(A~CO\JLE)) =X Em(ANE)
= (A~ (UiLEY)), hence p(4) = p(An(ULE)) +u(AnC(UZEY)).

Corollary 1. In order that R(x) be p-c. a., it is necessary and
sufficient that p(A) = (A~ B)+u(A~CB) for all A, Be R(w)".

4. Let {"M,} be a family of classes of sets. By (I,) we denote
the smallest finitely additive class of sets containing all M, and by
[IR,] the smallest completely additive class of sets containing all IMN,.

Theorem 3. If M is u-f. a., then [IN] ¢s p-c. a. .

Proof. Let {K.,} be a fundamental finite series. Then ({K.}, IN)
=My is p-f. a.9. Since p is an outer measure we can easily prove
that ¢ is a measure on Mg, i.e., if E,e Mg, K0 E; =0 (i==j) and
U2 E ;€ My, then p(\J21E) = S2.px(E). For an arbitrary set AKX,
we define p*(A4) by p*(A) = inf {3.u(E); E.e My, A\ J2uE}.
Then [My] = [{K.}, M] is wp*-c.a., for every element of [Mz] is
m*-measurable in the sense of Carathéodory”, and w* coincides with
pon Mg It is clear that p*(A)=w(A4) for all A. We have only
to show that wp*(M) = p(M) for Me[IR]. Since w(K,)<u(K.~M)+
(K, ~CM) L p* (Ko~ M) + p*(K,~CM) = p*(K,) = p(K,), then we have
p*(K,~M) = p(K.~M), and by Lemma 1 p*(M) = p(M).

Lemma 5. Let MM and A be p-f. a. classes of sets such that
pn(B)=p (B~ M)+ p(BACM) (for all n) for all BeA, MeR and for
o fundamental finite series {K.}. Then (I, A) is pf. a.

Proof. Let E be an element of (IR, A), then there exist a finite
number of elements B;eA and M;eM (=1, 2, ..., k), such that
B;~B;=0 (i==j5), \Ji-1B:=X and E=\/i..(M;~B;). Then it holds:

(%) /»‘m(E) = 2?-1/"1:(Mi’“B¢) .

Because : Since M R(x), putting in Lemma 2 A=K,, E;=B, for
1<i<k,E, =0 for i>k and FF= M (MeI), we get:

(1) pa(M) = Seip(MAB)) for MeR.

5) Cf. [E] Lemma 2.

6) Each element E of Mx will be expressed in the form E=(\/7., (K:
—Ki-)~M)—(CK,~M, ) where K,=0, M;el; and p(E)= S a(Ki—Ki-)~M;)
+u(CEn~Myry) .

7) Cf. Halmos: Measure theory §12 Theorem A.




630 S. ENoMOTO. [Vol. 27,

And also, putting A=K,~M, E;=B,; for 1<i<k, B;=0 for : >k
and F = M, where M, M'eIR, we get by (1)

(2) (M A B)=p, (M~ M ~B) + p(M~CM' ~B,).

From (1) and (2) we have, putting M=\J}.M;, p.(\JE. M)
=zé;lf"n(\/;;l%nB{)"Z«{‘;l{f"qn(\j;ﬁal%ﬁBiﬁMi)+ /“'ﬂ(\./;faiMiﬁBtr\CMi)}
= 2?- (B M)+ Z?-l”’n( \./j;-ﬁ]%‘f\ Bi)g/"u(\/f =1 (Bif“ M't))

+ /“‘n(ufﬂ \/j;ei(M"‘Bt))_Z_V'n(Vﬁl%" \/?-1Bz)=l-‘m(\/;=1Mi) .

Therefore we obtain 9, where E=\/{..(M;~B;). Now let it be E, €
WM, A) (v=1,2) and E,~E;=0. Then E, can be expressed in the
form E,=\/i.(M!~B,) (v=1, 2), where B,eq, B,~B;=0 (1==5), M}e
M and M; ~M;=0. Then by ™ and (2), p.(E\vE,)

= (V2 (Mo M)A B)) = Seapt (M M3~ B) =S M B)

+ pu(Mi~ By} =pu(E)) + 1(E2)

Theorem 4. Let M and A be p-c. a. classes of sets. In order
that [, A] be p-c. a., it is necessary and sufficitent that p.(B)
=u,(BAM)+ p (B~CM) (for all n) holds for all BeA, MeM and
Jor a fundamental finite series {K,}* .

Proof. The necessity of the condition is clear. The sufficiency
follows from Theorem 8 and Lemma 5.

5. Let M={M.} be the system of all p-c. a. classes of sets. M
will be an ordered system in such a way that ¢ MM, <M, means that
M, IR

Theorem 5. For each MeM there exists a maximal element IN*
of M such that | IM* .

Proof. Let {IM.» }(A€4) be any linearly ordered sub-system of
M. Then {M,,} has an upper bound in M. Because: One can
easily prove that (\/ae, M) = V2, Macry, and that Ve, M, is p-1f. a.,
hence by Theorem 3 [\/5¢,M.0ny] is p-f.a., which is an upper bound
of {M,n}. Thus, by Zorn’s Lemma holds Theorem 5.

Theorem 6. The union of all maximal p-c.a. classes Mie M
coincides with R(p): \JIME=R(w)?.

Proof. By Theorem1: \/ JGCTR(s). Let A be any element of

8) It is clear that th2 intersection of an arbitrary number of u-c. a. classes
A (%e4) is also u-c. a.. Theorem 4 can be extended as follows: ¢ Let %a (ded) be
u-c. a. classes of sets. Then the necessary and sufficient condition that [ (Ae4)]
be p-c. a. is that for an arbitrary finite number of Mgy (i=1, 2, ..., k; k=2)
holds the relation: #.(N\¥2]1Ad=u.(N\EZ1AimAz) + (221 4:~CAy), for all
Aea .

9) By Theorem 5, Theorem 6 and Theorem 7 holds: ‘¢ the union of all classes
My eM containing €(x) coincides with R(z)’’. We can here replace G(u) by €(z)
(by Theorem 1), Cf. [E] Lemma 8.
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R(x). Then (A4, CA) is itself p-c. a.. By Theorem 5 there exists a
maximal M, containing (4, CA). Therefore /. ME>R(w).

Theorem 7. The intersection of all maximal p-c.a. classes
MEeM coincides with Gw) : N IE=C(w) .

Proof: Since M;TR(), then by Theorem 4 [M}, G(x)] is also
p-c.a.. Hence ()M, Therefore ()N Let us assume
that G(u)==R(x). Let A; be any element of R(x)—E(x). Then there
exists an A;eR(w) such that

(**) #(As) < (A A)) +#(A2“CA1) .

By Theorem 4 and Theorem 5 there exists a maximal element of
M, MF, such that MED[C(w), (A, CA)]. But AEM; by (*%).
Therefore NMECE(w). If G(w) =R(x), we have also NI E(w).

Corollary 2. The necessary and sufficient condition that the or-
dered system M be a directed system, is that C(u)=R(u) .

Proof. If there exists only one maximal element IN* of M,
then by Theorem 6 and Theorem 7 holds: E(u)=M*=R(w). In
this case M is a directed system. If there exist at least two dif-
ferent maximal elements I and M: of M, then M is not directed.
By Theorem 6 and Theorem 7, we have in this case €(p)==R(w).

6. Remark. There are such cases that C(p)==€(r) and C(w)==
R(p), as the following examples show them' .

Example 1. X consists of 8 points a, b, ¢; X=(a, b, ¢), and s is
defined as follows: w((@)=2, w((B))=w((c)=38, w((d, c)=r((, )
=u((a, b))=4, w(X)=6. Then E=R={0, (a), (b), (¢), X}, but
€={0, X}.

Example 2. X=(a, b, ¢), ¢ is defined as follows: w((a))=x((d))
=u((0) = 2, w(®, )= p((c, a) =8, w(a, b)) =4, p(X)=5. Then
R={0, (@), ©®), (&, ¢), (¢, @), X}, but E=€={0, X}.

10) Cf. [E] Remark 3.



