7. On Some Representation Theorems in an Operator Algebra. III.

By Hisaharu UMEGAKI.

Mathematical Institute, Kyûshû University. (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1952.)

When we discuss group algebras on a locally compact group, the notion of C^{*}-algebra is very useful. But some group algebras are not always C^{*}-algebra. Hence we shall introduce a notion of normed algebra including C^{*}- and group algebras.

5. A normed*-algebra \mathfrak{A} with the norm $\||\cdot\|$ over the complex number field is called with D^* -algebra if \mathfrak{A} has an approximate identity $\{e_x\}$ (cf. Segal [1]) which is a directed set such as $\||e_x\|| \leq 1$ and $\||e_x x-x\|| \stackrel{\sim}{\rightarrow} 0$ for any $x \in \mathfrak{A}$. Clearly C*- and L¹-group algebras are D*-algebras. $f(\cdot)$ is said to be semi-trace of \mathfrak{A} if it is a linear functional (not always bounded) defined on a dense subalgebra generated by $\{xy; x, y \in \mathfrak{A}\}$ such that f(xy) = f(yx), $f(x^*) = \overline{f(x)}$ $f(x^*x) \geq 0$ and $f((xy)^*xy) \leq ||x||^2 f(y^*y)$. A semi-trace is pure, if it is not a linear combination of two linearly independent semi-traces of \mathfrak{A} . A representation $\{U_x, \mathfrak{H}\}$ is said to be proper, if the element $\xi \in \mathfrak{H}$ satisfying $U_x \xi = 0$ for all $x \in \mathfrak{A}$ is only the zero element O in \mathfrak{H} . Moreover we also define the properness for a two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$, if the one-sided representation $\{U_x, \mathfrak{H}\}$ or $\{V_x, \mathfrak{H}\}$ is proper. Denote the W*-algebras generated by $\{U_x; x \in \mathfrak{A}\}$ or $\{V_x; x \in \mathfrak{A}\}$ by U or V respectively.

Theorem 5. Let τ be a semi-trace of a D^* -algebra \mathfrak{A} . Then there corresponds a proper two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$ such that U=V', U'=V and $jAj=A^*$ for $A \in U \cap V$.

Corollary 5.1. If the D^* -algebra \mathfrak{A} is separable, then the semitrace is a directed integral of pure semi-traces $\pi(\cdot, \lambda)$, $\lambda \in N$ ($\sigma(\lambda)$ null set), with respect to a $\sigma(\lambda)$ -measure.

A two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$ is strictly normal, if there exists $\xi \in \mathfrak{H}$ such that $U_x \xi = V_x \xi$ for all $x \in \mathfrak{A}$ and $\{U_x \xi; x \in \mathfrak{A}\}$ span \mathfrak{H} . Then

Theorem 6. If a D^* -algebra \mathfrak{A} has a strictly normal two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$, then the normalizing function is trace and conversely. This correspondence is one-to-one without equivalence. The generated W^* -algebra U (or V) has a complete trace and both in finite class (in the sense of J. Dixmier [3]).

6. Motion in C^* - or D^* -algebra. The investigation of a motion in C^* -algebra has been introduced by I. E. Segal (cf. [2]) which is

H. UMEGAKI.

one parameter group of automorphisms on \mathfrak{A} . We shall describe on a motion G of \mathbb{C}^* - or \mathbb{D}^* -algebra whose parameter is any group with a continuity, i.e., let \mathfrak{A} be a \mathbb{D}^* -algebra and G be a group of automorphisms on \mathfrak{A} : for any $s \in G$ $(a x + \beta y)^s = a x^s + \beta y^s$, $x^{*s} = x^{s*}$ and $(xy)^s = x^s y^s$, and G has a topology such as, for each $x \in \mathfrak{A}$ x^s is continuous on G.

A trace or semi-trace τ of \mathfrak{A} is said to be *stationary*, if $\tau(x^sy^s) = \tau(xy)$ for all $x, y \in \mathfrak{A}$ and $s \in G$. A stationary trace or semi-trace is *ergodic*, if it is not a positive linear combination of linearly independent such two other traces or semi-traces respectively.

Theorem 7. Any stationary trace $\tau(\cdot)$ is represented by a directed integral of ergodic traces $\pi(\cdot, \lambda)$, $\lambda \in N$, with respect to a suitable weight function $\sigma(\lambda)$:

$$\tau(x) = \int_{\mathbb{R}} \pi(x, \lambda) \, d\sigma(\lambda) \qquad \text{for all } x \in \mathfrak{A}$$

Finaly we shall state that the decomposition of invariant regular measure on a locally compact space with a group of homeomorphisms. Let Ω be a locally compact Hausdorff space and G be a group of homeomorphisms on Ω . C_{∞} or C_0 denote the class of all continuous functions on Ω vanishing at infinity or zero out-side of compact sets of Ω respectively. For all $x \in C_{\infty}$ or C_0 , if we put $||x|| = \sup_{\omega \in \Omega} |x(\omega)|$, then C_{∞} or C_0 is C^{*}- or D^{*}-algebra. A homeomorphism h on Ω reduces an automorphism on C_{∞} or C_0 by $x^h(\omega) = x(h\omega)$ for $x \in C_{\infty}$ or C_0 and $\omega \in \Omega$, and conversely. Hence G can be considered as a group of automorphisms on C_{∞} or C_0 . We can introduce a topology into G for which G is motion of C_{∞} or C_0 .

Let $\mu(\cdot)$ be a regular measure on Ω invariant under G. Putting

$$\tau(x) = \int_{\Omega} x(\omega) \, d\mu(\omega) \qquad \text{for } x \in C_0;$$

 $\tau(\cdot)$ is a stationary semi-trace of C_0 . Applying the Corollary 5.1, we have

Theorem 8. Let Ω be a locally compact Hausdorff space satisfying the second countable axiom with a group G of homeomorphisms on Ω , and $\mu(\cdot)$ be a regular measure of Ω invariant under G. Then there exists a system of ergodic measures $\mu(\cdot, \lambda)$ of Ω , $\lambda \in N(\sigma(\lambda)$ -null set), such that for all $x \in C_0$

(1)
$$\int_{\Omega} x(\omega) \, d\mu(\omega) = \int_{R} \int_{\Omega} x(\omega) \, d\mu(\lambda, \omega) \, d\sigma(\lambda)$$

and for all compact sets K in Ω

(2)
$$\mu(K) = \int_{R} \mu(K, \lambda) \, d\sigma(\lambda)$$

No. 1.] On Some Representation Theorems in an Operator Algebra. III. 31

where $\sigma(\lambda)$ is a suitable weight function.

The proofs of all theorems in this paper will apper in elsewhere.

References.

[1] I. E. Segal: Irreducible representations of operator algebra. Bull. Amer. Math. Soc., 48 (1947), 73-88.

[2] I.E. Segal: A class of operator algebras which are determined by group. Duke Math. J., 18 (1951), 221-265.

[3] J. Dixmier : Les Anneaux d'Operateus de class Finie. Ann. Sci. de L'Ecole Norm. Sup. Paris (1949), 209-261.

Appendix for the definition of semi-trace $\tau(x)$ in §5: there exists a sequence $\{e_{\alpha n}\}$ ($\subset \{e_{\alpha}\}$) dependently on $x \in \mathfrak{A}$ such that $\tau(e_{\alpha n}^* x^* x e_{\alpha n}) \rightarrow \tau(x^* x)$ as $n \rightarrow \infty$.