44. On The Interval Containing At Least One Prime Number.

By Jitsuro Nagura.
(Comm. by Z. Suetuna, m.J.a., April 12, 1952.)
Bertrand-Tschebyschef's theorem (1852) is well-known for the interval between x and $2 x$ where $x>1$, within which at least one prime number exists; this paper, however, enables us to reduce it up to between x and $6 x / 5$ where $x \geqq 25$. In conformity with Ramanujan*, we establish the proof of our theorem upon the following fundamental formula: $T(x)=\sum_{m=1}^{\infty} \psi(x / m)=\log \Gamma([x]+1)$ where $\psi(x)$ $=\sum_{m=1}^{\infty} \vartheta(\sqrt[m]{x})$ and $\vartheta(x)=\sum_{p \leq x} \log p$.

Lemma 1. When $n>1$,

$$
\frac{1}{n} T(x)-T\left(\frac{x}{n}\right) \geqq \frac{1}{n} \log \Gamma(x)-\log \Gamma\left(\frac{x+n-1}{n}\right) \quad(x \geqq 1)
$$

and

$$
\frac{1}{n} T(x)-T\left(\frac{x}{n}\right) \leqq \frac{1}{n} \log \Gamma(x+1)-\log \Gamma\left(\frac{x+1}{n}\right) \quad(x \geqq n) .
$$

Proof. Since $\frac{\Gamma^{\prime}}{\Gamma}(s)=\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-s t}}{1-e^{-t}}\right) d t$ when $s>0$,

$$
\frac{\Gamma^{\prime}}{\Gamma}(x)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{x+n-1}{n}\right)=\int_{0}^{\infty} \frac{1}{1-e^{-t}}\left(e^{-\frac{x+n-1}{n} t}-e^{-x t}\right) d t>0 \quad(x>1)
$$

and

$$
\frac{\Gamma^{\prime}}{\Gamma}(x+1)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{x+1}{n}\right)=\int_{0}^{\infty} \frac{1}{1-e^{-t}}\left(e^{-\frac{x+1}{n} t}-e^{-(x+1) t}\right) d t>0 \quad(x>0)
$$ that is to say, $\frac{1}{n} \log \Gamma(x)-\log \Gamma\left(\frac{x+n-1}{n}\right)$ and $\frac{1}{n} \log \Gamma(x+1)$ $-\log \Gamma\left(\frac{x+1}{n}\right)$ are increasing functions when $x \geqq 1$ and $x>0$ resp.

Hence we have

$$
\begin{array}{rlr}
\frac{1}{n} \log \Gamma(x)-\log \Gamma\left(\frac{x+n-1}{n}\right) \\
& \leqq \frac{1}{n} \log \Gamma([x]+1)-\log \Gamma\left(\frac{[x]+n}{n}\right) & (x \geqq 1), \\
& \leqq \frac{1}{n} \log \Gamma([x]+1)-\log \Gamma\left(\left[\frac{x}{n}\right]+1\right)=\frac{1}{n} T(x)-T\left(\frac{x}{n}\right) \\
& \leqq \frac{1}{n} \log \Gamma([x]+1)-\log \Gamma\left(\frac{[x]+1}{n}\right) \\
& \leqq \frac{1}{n} \log \Gamma(x+1)-\log \Gamma\left(\frac{x+1}{n}\right) & ([x] \geqq n-1), \\
& (x>0) ;
\end{array}
$$

[^0]then, removing the intermedia, we should obtain this lemma.
As the special case of Lemma 1, we have
\[

\left.$$
\begin{array}{rl}
& T(x)-T\left(\frac{x}{2}\right)-T\left(\frac{x}{3}\right)-T\left(\frac{x}{7}\right)-T\left(\frac{x}{43}\right)-T\left(\frac{x}{1806}\right) \\
= & \frac{1}{2} T(x)-T\left(\frac{x}{2}\right) \\
+\frac{1}{3} T(x)-T\left(\frac{x}{3}\right)+\frac{1}{7} T(x)-T\left(\frac{x}{7}\right) \\
& +\frac{1}{43} T(x)-T\left(\frac{x}{43}\right)+\frac{1}{1806} T(x)-T\left(\frac{x}{1806}\right)
\end{array}
$$\right\} $$
\begin{aligned}
& \leqq \log \Gamma(x+1)-\log \Gamma\left(\frac{x+1}{2}\right)-\log \Gamma\left(\frac{x+1}{3}\right)-\log \Gamma\left(\frac{x+1}{7}\right) \\
& -\log \Gamma\left(\frac{x+1}{43}\right)-\log \Gamma\left(\frac{x+1}{1806}\right) \quad(x \geqq 1806),
\end{aligned}
$$
\]

which is computed by Stirling's formula, $\log \Gamma(x)=\left(x-\frac{1}{2}\right) \log x$ $-x+\log \sqrt{2 \pi}+\frac{\theta}{12 x}(0<\theta<1)$, as follows:

$$
\begin{aligned}
& <(x+1) \log (x+1)-\frac{x+1}{2} \log \frac{x+1}{2}-\frac{x+1}{3} \log \frac{x+1}{3}-\frac{x+1}{7} \log \frac{x+1}{7} \\
& -\frac{x+1}{43} \log \frac{x+1}{43}-\frac{x+1}{1806} \log \frac{x+1}{1806}-\frac{1}{2}\left(\log (x+1)-\log \frac{x+1}{2}\right. \\
& \left.-\log \frac{x+1}{3}-\log \frac{x+1}{7}-\log \frac{x+1}{43}-\log \frac{x+1}{1806}\right) \\
& -(x+1)+\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{7}+\frac{x+1}{43}+\frac{x+1}{1806}-4 \log \sqrt{2 \pi}+\frac{1}{12(x+1)} \\
& =(x+1)\left(\frac{1}{2} \log 2+\frac{1}{3} \log 3+\frac{1}{7} \log 7+\frac{1}{43} \log 43+\frac{1}{1806} \log 1806\right) \\
& \quad+2 \log (x+1)-\log 1806-4 \log \sqrt{2 \pi}+\frac{1}{12(x+1)}
\end{aligned}
$$

$$
\begin{equation*}
<1.0824 x+2 \log (x+1)-10+\frac{1}{12 x}<1.0851 x \quad(x \geqq 2000) . \tag{1}
\end{equation*}
$$

Similarly we have also

$$
\begin{aligned}
& T(x)-T\left(\frac{x}{2}\right)-T\left(\frac{x}{3}\right)-T\left(\frac{x}{5}\right)+T\left(\frac{x}{30}\right) \\
& \geqq \log \Gamma(x)-\log \Gamma\left(\frac{x+1}{2}\right)-\log \Gamma\left(\frac{x+2}{3}\right)-\log \Gamma\left(\frac{x+4}{5}\right)+\log \Gamma\left(\frac{x+1}{30}\right) \\
& \quad-\frac{1}{30}(\log \Gamma(x+1)-\log \Gamma(x)) \quad(x \geqq 30), \\
&> x \log x-\frac{x+1}{2} \log \frac{x+1}{2}-\frac{x+2}{3} \log \frac{x+2}{3}-\frac{x+4}{5} \log \frac{x+4}{5} \\
& \quad+\frac{x+1}{30} \log \frac{x+1}{30}-x+\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+4}{5}-\frac{x+1}{30}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2}\left(\log x-\log \frac{x+1}{2}-\log \frac{x+2}{3}-\log \frac{x+4}{5}+\log \frac{x+1}{30}\right) \\
& -\log \sqrt{2 \pi}-\frac{10}{12(x+1)}-\frac{1}{30} \log x \\
=\{ & -\frac{x}{2} \log \left(1+\frac{1}{x}\right)-\frac{x}{3} \log \left(1+\frac{2}{x}\right)-\frac{x}{5} \log \left(1+\frac{4}{x}\right) \\
+ & \left.\frac{x}{30} \log \left(1+\frac{1}{x}\right)+\frac{1}{2}+\frac{2}{3}+\frac{4}{5}-\frac{1}{30}-\frac{5}{6(x+1)}\right\} \\
+ & (x-1)\left(\frac{1}{2} \log 2+\frac{1}{3} \log 3+\frac{1}{5} \log 5-\frac{1}{30} \log 30\right) \\
& -\frac{8}{15} \log x-\frac{7}{15} \log (x+1)-\frac{1}{6} \log (x+2)-\frac{3}{10} \log (x+4) \\
+ & \frac{14}{15} \log 30-\log \sqrt{2 \pi} ;
\end{aligned}
$$

here, the sum of the terms inside the crooked brackets $>\frac{1}{2 x}\left(\frac{1}{2}\right.$ $\left.-\frac{1}{3 x}\right)+\frac{4}{3 x}\left(\frac{1}{2}-\frac{2}{3 x}\right)+\frac{16}{5 x}\left(\frac{1}{2}-\frac{4}{3 x}\right)-\frac{1}{60 x}-\frac{5}{6 x}=\frac{1}{60 x}\left(100-\frac{958}{3 x}\right)>0 \quad$ when $x \geqq 4$, then

$$
\begin{align*}
& >(x-1)\left(\frac{1}{2} \log 2+\frac{1}{3} \log 3+\frac{1}{5} \log 5-\frac{1}{30} \log 30\right)-\log \left(x+\frac{1}{2}\right) \\
& -\frac{7}{15} \log \left(x+\frac{8}{3}\right)+\frac{14}{15} \log 30-\log \sqrt{2 \pi} \\
& >0.9212 x-\frac{22}{15} \log (x+2)+1.3>0.916 x \quad(x \geqq 2000) . \tag{2}
\end{align*}
$$

Lemma 2. Both the upper and lower bounds of $\psi(x)$ are given by the following:

$$
1.086 x>\psi(x)>0.916 x-2.318 \quad(x>0)
$$

Proof. We have

$$
\begin{aligned}
T(x) & -T\left(\frac{x}{2}\right)-T\left(\frac{x}{3}\right)-T\left(\frac{x}{6}\right) \\
& =\psi(x)+\sum_{m=1}^{\infty}\left(\psi\left(\frac{x}{6 m-1}\right)-2 \psi\left(\frac{x}{6 m}\right)+\psi\left(\frac{x}{6 m+1}\right)\right) \\
& \geqq \psi(x)-\sum_{m=1}^{\infty}\left(\psi\left(\frac{x}{6 m}\right)-\psi\left(\frac{x}{6 m+1}\right)\right), \\
\text { then } \quad T(x) & -T\left(\frac{x}{2}\right)-T\left(\frac{x}{3}\right)-T\left(\frac{x}{7}\right)-T\left(\frac{x}{42}\right) \\
& \geqq \psi(x)+\sum_{m=1}^{\infty}\left(\psi\left(\frac{x}{6 m+1}\right)-\psi\left(\frac{x}{7 m}\right)-\psi\left(\frac{x}{42 m}\right)\right)
\end{aligned}
$$

$$
\geqq \psi(x)-\sum_{m=1}^{\infty}\left(\psi\left(\frac{x}{42 m}\right)-\psi\left(\frac{x}{42 m+1}\right)\right)
$$

and once more

$$
\begin{aligned}
T(x) & -T\left(\frac{x}{2}\right)-T\left(\frac{x}{3}\right)-T\left(\frac{x}{7}\right)-T\left(\frac{x}{43}\right)-T\left(\frac{x}{1806}\right) \\
& \geqq \psi(x)+\sum_{m=1}^{\infty}\left(\psi\left(\frac{x}{42 m+1}\right)-\psi\left(\frac{x}{43 m}\right)-\psi\left(\frac{x}{1806 m}\right)\right) \\
& \geqq \psi(x)-\sum_{m=1}^{\infty}\left(\psi\left(\frac{x}{1806 m}\right)-\psi\left(\frac{x}{1806 m+1}\right)\right) \geqq \psi(x)-\psi\left(\frac{x}{1806}\right) .
\end{aligned}
$$

Hence, according to (1), we have $\psi(x)-\psi(x / 1806)<1.0851 x \quad(x$ ≥ 2000); and since it is verifiable that this is true also when $0<x$ <2000, let us write $x, x / 1806, x / 1806^{2}, x / 1806^{3}, \ldots$ for x, and add them side by side, then we obtain

$$
\psi(x)<1.0851\left(x+\frac{x}{1806}+\frac{x}{1806^{2}}+\frac{x}{1806^{3}}+\ldots\right)<1.086 x \quad(x>0)
$$

Next, we have

$$
\begin{aligned}
& T(x)-T\left(\frac{x}{2}\right)-T\left(\frac{x}{3}\right)-T\left(\frac{x}{5}\right)+T\left(\frac{x}{30}\right) \\
& =\psi(x)+\psi\left(\frac{x}{7}\right)+\psi\left(\frac{x}{11}\right)+\psi\left(\frac{x}{13}\right)+\psi\left(\frac{x}{17}\right) \\
& +\psi\left(\frac{x}{19}\right)+\psi\left(\frac{x}{23}\right)+\psi\left(\frac{x}{29}\right)+\ldots * \\
& -\psi\left(\frac{x}{6}\right)-\psi\left(\frac{x}{10}\right)-\psi\left(\frac{x}{12}\right)-\psi\left(\frac{x}{15}\right)-\psi\left(\frac{x}{18}\right) \\
& \quad-\psi\left(\frac{x}{20}\right)-\psi\left(\frac{x}{24}\right)-\psi\left(\frac{x}{30}\right)-\ldots * \leqq \psi(x)
\end{aligned}
$$

therefore, according to (2), we have $\psi(x)>0.916 x(x \geqq 2000)$; and since it is also verifiable that $0.916 x-2.318$, instead of $0.916 x$, is less than $\psi(x)$ when $0<x<2000$, we obtain

$$
\psi(x)>0.916 x-2.318 \quad(x>0)
$$

Theorem. There exists at least one prime number p such as:

$$
a_{n} \leqq x<p<\left(1+\frac{1}{n}\right) x \quad\binom{n=1,2,3,4,5 ;}{a_{n}=2,8,9,24,25, \operatorname{resp} .}
$$

Proof. In order to prove $\vartheta\left(\frac{n+1}{n} x\right)-\vartheta(x)>0$ for the values of x as small as possible, let us use

[^1]$$
\psi(x)-\psi(\sqrt{x})-\psi(\sqrt[3]{x}) \geqq \vartheta(x) \geqq \psi(x)-\psi(\sqrt{x})-\psi(\sqrt[3]{x})-\psi(\sqrt[5]{x})
$$
and we have
\[

$$
\begin{aligned}
\vartheta\left(\frac{n+1}{n} x\right)-\vartheta(x) & \geqq \psi\left(\frac{n+1}{n} x\right)-\psi\left(\sqrt{\frac{n+1}{n} x}\right)-\psi\left(\sqrt[3]{\frac{n+1}{n} x}\right)-\psi\left(\sqrt[5]{\frac{n+1}{n} x}\right) \\
& -\psi(x)+\psi(\sqrt{x})+\psi(\sqrt[3]{x})
\end{aligned}
$$
\]

then, by Lemma 2,

$$
\begin{aligned}
>0.916\left(\frac{n+1}{n} x\right. & +\sqrt{x}+\sqrt[3]{x})-6.954 \\
& -1.086\left(x+\sqrt{\frac{n+1}{n}}+\sqrt[3]{\frac{n+1}{n} x}+\sqrt[5]{\frac{n+1}{n} x}\right)
\end{aligned}
$$

which becomes positive when $n \leqq 5$ for sufficiently large values of x, that is to say

$$
\begin{aligned}
\vartheta(2 x)-\vartheta(x)>0 & (x \geqq 18), \\
\vartheta\left(\frac{3}{2} x\right)-\vartheta(x)>0 & (x \geqq 48), \\
\vartheta\left(\frac{4}{3} x\right)-\vartheta(x)>0 & (x \geqq 109), \\
\vartheta\left(\frac{5}{4} x\right)-\vartheta(x)>0 & (x \geqq 293) \\
\vartheta\left(\frac{6}{5} x\right)-\vartheta(x)>0 & (x \geqq 2103) .
\end{aligned}
$$

While there is surely at least one prime number between x and $(n+1) x / n$ when $2 \leqq x<18,8 \leqq x<48,9 \leqq x<109,24 \leqq x<293$ and $25 \leq x<2103$ according as $n=1,2,3,4$ and 5 resp.; our theorem is thus proved.

[^0]: * S. Ramanujan: A Proof of Bertrand's postulate (Collected papers, 208-209).

[^1]: * The denominator in every term after $\psi(x / 29)$ or $-\psi(x / 30)$ is congruent to some of preceding ones with respect to 30 .

