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3. Estimation without reference to spouse.

The problem discussed in 2 concerned the case where the type
of a spouse of an individual in question is also taken into account.
The corresponding problem may be treated independently of the type
of a spouse.

We first consider again the simplest case, the Q blood type. Let
an individual oi phenotype Q be given. Then, the type q of its
child is impossible unless the individual is heterozygotic. Hence, we
have only to cosider the case where all the n children of the in-
dividual are of the type Q. In this case, we denote by

Pr{Q=QQIQ} and Pr{Q=QqI---Q}
the probabilities a posteriori of the individual to be of homozygote
QQ and of heterozygote Qq, respectively, which will be determined
in the following lines.

Now, the probabilities a priori of QQ and Qq among Q are

regarded as QQ/Q=u/(I+v) and Qq/Q----2v/(l+v), respectively, the
ratio being u "2v. An individual QQ produces Q alone, while an
individual Qq produces Q with probability

r(Qq; QQ) / r(Qq; Qq) 1 / u
Qq 2

the z’s denoting the probabilities of mother-child combinations defined
in 1 of IV, which may also be regarded as those of father-child
combinations. Thus, based on the Bayes’ theorem, we get the desired
probabilities

(3.1) Pr{Q--QQIQ} u’l 2-u

u. l" / 2 v(..1/u ) 2-u/ v(l /.u)
2

v(1 + u)(3.1’) Pr{Q--QqI-Q’}--1-Pr{Q--QQ[Q’}
2-u+v(l+u).

We proceed to deal with the ABO blood type. Let an individual
of phenotype A be given. If it is homozygotic, then the type of a
child is restricted to A or AB, while if it is heterozygotic, then any
type of a child is possible. Accordingly, if there exists at least one
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child of O or B, then the individual must be heterozygotic. Hence,
we have only to consider the case, where all the children are of the
type A or AB. If, among all the n children, there are , children
A and n-, children AB, we denote by Pr{A-=AAIA[ABn-} and
Pr{A--AOI-.A[AB-} the probabilities a posteriori oi the in-
dividual to be homozygotic and heterozygotic, reslectively. Now,
the probabilities a priori of AA and AO have a ratio p "2r. An
individual AA produces A and AB with respective probabilities

z(AA; AA) + =(AA; AO) and (AA; AB)
AA

--p+r AA --q’

while an individual AO produces A and AB with respective prob-
abili’ies

zr(AO AA) + r(AO AO) 2p+ r and zr(AO; AB) q
A--- 2 -AO 2

Thus, we obtain, by means of the Bayes’ theorem, the desired
probabilities

Pr{A=AAIAIAB-}(3.2)
p(p+r)q- 2’-p(p + r)

2-lp(p + r) + r(2p + r)

Pr {A----AOIAIAB-}
(3.2()

_I_Pr{A_AAI_AIAB_}_ r(2p+r)
2"-Ip(p + r) + r(2p + r)

The corresponding probabilities with reslect to an individual of
type B can be immediately written down. In fact, we have only
to replace A, B, p by B, A, q, respectively. We thcs get, corres-
ponding to (3.2) ad (3.2’), the following expressions

2-q(q+r)(3.3) Pr{B=BBI--B’[AB’-}=2-lq(q +r)+ r(2q+ r)i’

(3.3’) Pr{B=BOIBIAB-} r(2q + r)
--2-lq(q + r) + r(2q + r)"

By the way, if all the n children are known merely as either
A or AB, then the probabilities a posteriori o the individual to be
homozygotic and heterozygotic are given respectively by

Pr {A--AAI-(AJAB)}
(3.4) p.l" 2-p

p l" + 2r(l + P) 2-IP+ r(I + P)
2

Pr A AO I--.(A[JAB)}
(3.4’) __I_Pr{A=AAI__(A/AB)}=_ r(1 +p)

2’-p+ r(1 + p)
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since an individual AA produces A or AB with probability

r(AA; AA)+ 7(AA; AO)+ 7(AA; AB) ---p+r+q--1,
AA

while an individual AO produces A or AB with probability

r(AO; AA) + r(AO AO) + =(AO AB) p_p_ + p + r_t q _1 +p.
AA 2 2 2 2

Similarly, we get, by interchanging A and B, the corresponding
probabilities

(3.5) Pr {B=BBI--(BUAB)n}

Pr{B--BOI(BJAB)}

2-q+ r(1 + q)"’
r(1 + q)

2 tq + r(1 + q)
Comparing (3.4) and (3.5) with (3.2) and (3.3)respectively, we

notice that the inequalities

(3.6)

Pr{A=AAIA} <Pr (A=AAI--.(AJAB)n}
<Pr{A=AAIAB},

Pr{B=BB[B} <Pr{B=BBI(BUAB)}
<Pr{B=BBI--,AB}

hold good except for the trivial distributions with pqr--O, which
correspond to (2.15).

The corresponding estimations can be made for other inheritecl
characters in quite a similar way. We give here, making use of the
notations similarly understood as above, the results on the Qq+_ bloed
type.

2"-t(3.7)=(3.) Pr{Q=QQiQ}--
2-u+ v (1 + u)’

v(1 + u)(3.7’) Pr{Q=Qq_I-,Q}= 2,_u+v(l+u),

(3.7") Pr{Q--Qq/IQ}= v(l+u)
2 U-b V(1 -[- U)

(3.8’) Pr{Q=Qq_lQlq_-}= v"- (,<n),
Vn- -b VVn--

(3.8") Pr {Q=Qq+I--Qfq’_-} v"’v--
V

(3.9) 2V-VlVPr {q-=q-q-I--q-IQ’-}
2-vv+ v.(v+ v)

Pr (q_ --q_q+ iq_/%Q-} V2(V -It- Vl)
2-lvv zt- V,.,(V-b V)

By the way, we notice finally the further probabilities



No. 8.] Investigations on Inheritance. XIII., Estimation of Genotypes. 441

(3.10) pr{Q=QQI(QUq_)n}
2n-l(u + 2vl) + v(1 + u + v)’

(3.10’) pr (Q=Qq_ l-.(Q[]q _)}
2"-(u + 2v) + v(1 + u + v)’

(3.10") Pr{Q---Qq+l(QJq_)}= v.(1 + u + v)
2-(u+ 2v) + v(1 + u+ v)

(3.11) 2n-lvlPr {q_ =q_q_ I(q_JQ)"}
2-1v + v(1 + u + v)"’

(3.11’) v(1 + u + v)Pr{q-=q-q/l-*(q-jQ)n}=
2n-lV + V(1 + U+V)

4. Lower bound for number of children.
The probability a posteriori of an individual representing a

dominant character to be homozygotic has been computed in the
preceding sections with or without reference to type of its spouse.
Applying the results obtained, we shall now deal with a problem
stated as follows: Given an individual representing a dominant
character, how many children of the same type as that of the individual
.will suigice to presume the type of the individual to be homozygotic
with a probability not less than a preassigned value ? A lower bound
for the number of children will be obtained by solving an inequality
stating that the respective probability a posteriori is not less than
the preassigned value.

Let the preassigned value be denoted by a with 0<a<l. For
the case {Q=QQI Q--*Q’} in (2.1), the inequality

Pr{Q=QQI Q-Q}_a
is solved by

( a 2v)/ 2(1+v)log(4.1) nlog
1 a u 2+v

For instance, if u=1/5 and v=4/5, it becomes

nlog 18aa/log 9

and further if we put a--9/10 or c----4/5, we get respectively

n_log 72/(log 9-log 7)=17.02...,
n:>log 32/(log 9-log 7)---13.79

Thus, in case, u=l/5 and v=4/5, if an individual Q accompanied by
its spouse Q has produced the children of Q alone, then it may be
presumed o be homozygotic with a probability greater than 9/10
or 4/5 provided the number of children exceeds 17 or 13 respectively.
These bounds will be perhaps too large ior a practical use, but a
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smaller bound will be found by conceding the probability of con-
fidence.

For the case in (2.2), the ine/uality Pr{Q--QQ! q-Q}c is
solved by

( a 2V)/log2.(4.2) nlog
1-a u

For instance, if u--1/5 and v=4/5, it becomes
8a /log 2,n:>log

i -a
and further if we put a--9/10 or a=4/5, we get respectively

nlog 72/log 2--6.17..., nlog 32/log 2--5.
Thus, in case u1/5 and v--4/5, if an iadividual Q accompanied by
its sgouse q has produced the childrea Q alone, then it may be
presumed to be homozygotic with a probability greater than 9/10
or not less than 4/5 provided the number of children exceefls 6 or
is not less than 5, respectively.

In a similar way, we obtain, for the cases (2.3) to (2.5) con-
cerning the ABO blood type, the solution of the corresponding
inequalities respectively as follows:

(>1o.1-a p

( a 2r)/log 2(p+2r)(4.4) n_log
1--a p 2p+3r

a 2r.)/log 2,(4. 5) n_log (
\ 1 a p

while we get, by s01ving a corresponding inequality for the case
(2.6), an inequality

( .a 2r.)/log 2.(4.6) n--vlog
1-a p

However, in case v=n, it would here be noticed that, since the
probability for v=n, i.e., Pr{A--AA[ABA}=p/(p+2r) is in-
dependent of the value of n, the inequality for v=n does always or
does never hold provided the right-hand member of (4.6) is non-
positive or positive, respectively.

Similar results can also be derived for the case (2.7)to (2.10).
In fact, we have only to replace p by q in (4.3) to (4.6), respec-
tively.

The solutions of the corresponding inequalities for the cases
(2.11), (2.12) become respectively

( )1 (-a 2r. log 2, nlog
1 a p

(4.7) n_log
1--a p -3-"
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The results on the Qq+_ blood type will also be derived from
(2.16) to (2.26); the actual calculation will be left to the reader.

We shall now proceed to consider the corresponding problem
on the probabilities a posteriori given in 3. First, for the case
{Q=QQ[--Q} in (3.1), the inequality Pr{Q=QQI--,Q}_a is solved
by

( a 2V)/log 2(4.8) n:>log
1-a u l+u

For the case in (3.2), the inequality Pr{A=AAIA[AB-}_a
is solved in the form

(4.9) n,log 2p+r /log2+log(. a 2r)/1og2.p+r 1--c p

In particular cases ,=n and ,--0, the last inecluality becomes
respectively

I ( a 2r)/log 2(p+r)nlog
1--a p 2p+r

1o
1--p p

Similar results will also be derived with respect to (3.3).
We obtain the solution of the corresponding inequality for the

case (3.4) in the form

( a 2r)/log 2(4.10) nlog
l--a p l+p’

and similarly for the case (3.5).
The results on the Qq+_ blood type are omitted, being left to the

reader.


