100. Probability-theoretic Investigations on Inheritance. XIII $_{2}$. Estimation of Genotypes.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University.

(Comm. by T. Furuhata, m.J.a., Oct. 13, 1952.)
3. Estimation without reference to spouse.

The problem discussed in § 2 concerned the case where the type of a spouse of an individual in question is also taken into account. The corresponding problem may be treated independently of the type of a spouse.

We first consider again the simplest case, the Q blood type. Let an individual of phenotype Q be given. Then, the type q of its child is impossible unless the individual is heterozygotic. Hence, we have only to consider the case where all the n children of the individual are of the type Q. In this case, we denote by

$$
\operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\} \quad \text { and } \quad \operatorname{Pr}\left\{Q=Q q \mid \rightarrow Q^{n}\right\}
$$

the probabilities a posteriori of the individual to be of homozygote $Q Q$ and of heterozygote $Q q$, respectively, which will be determined in the following lines.

Now, the probabilities a priori of $Q Q$ and $Q q$ among Q are regarded as $\overline{Q Q} / \bar{Q}=u /(1+v)$ and $\overline{Q q} / \bar{Q}=2 v /(1+v)$, respectively, the ratio being $u: 2 v$. An individual $Q Q$ produces Q alone, while an individual $Q q$ produces Q with probability

$$
\frac{\pi(Q q ; Q Q)+\pi(Q q ; Q q)}{\overline{Q q}}=\frac{1+u}{2}
$$

the π 's denoting the probabilities of mother-child combinations defined in $\S 1$ of IV, which may also be regarded as those of father-child combinations. Thus, based on the Bayes' theorem, we get the desired probabilities

$$
\begin{align*}
& \operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\}=\frac{u \cdot 1^{n}}{u \cdot 1^{n}+2 v\left(\frac{1+u}{2}\right)^{n}}=\frac{2^{n-1} u}{2^{n-1} u+v(1+\cdot u)^{n}}, \tag{3.1}\\
& \operatorname{Pr}\left\{Q=Q q \mid \rightarrow Q^{n}\right\}=1-\operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\}=\frac{v(1+u)^{n}}{2^{n-1} u+v(1+u)^{n}} .
\end{align*}
$$

We proceed to deal with the $A B O$ blood type. Let an individual of phenotype A be given. If it is homozygotic, then the type of a child is restricted to A or $A B$, while if it is heterozygotic, then any type of a child is possible. Accordingly, if there exists at least one
child of O or B, then the individual must be heterozygotic. Hence, we have only to consider the case, where all the children are of the type A or $A B$. If, among all the n children, there are ν children A and $n-\nu$ children $A B$, we denote by $\operatorname{Pr}\left\{A=A A \mid \rightarrow A^{\nu} \cap A B^{n-\nu}\right\}$ and $\operatorname{Pr}\left\{A=A O \mid \rightarrow A^{\nu} \cap A B^{n-\nu}\right\}$ the probabilities a posteriori of the individual to be homozygotic and heterozygotic, respectively. Now, the probabilities a priori of $A A$ and $A O$ have a ratio $p: 2 r$. An individual $A A$ produces A and $A B$ with respective probabilities

$$
\frac{\pi(A A ; A A)+\pi(A A ; A O)}{\overline{A A}}=p+r \quad \text { and } \quad \frac{\pi(A A ; A B)}{\overline{A A}}=q
$$

while an individual $A O$ produces A and $A B$ with respective probabilities

$$
\frac{\pi(A O ; A A)+\pi(A O ; A O)}{\overline{A O}}=\frac{2 p+r}{2} \text { and } \frac{\pi(A O ; A B)}{\overline{A O}}=\frac{q}{2}
$$

Thus, we obtain, by means of the Bayes' theorem, the desired probabilities

$$
\begin{align*}
& \operatorname{Pr}\left\{A=A A \mid \rightarrow A^{\nu} \cap A B^{n-\nu}\right\} \tag{3.2}\\
& =\frac{p(p+r)^{\nu} q^{n-\nu}}{p(p+r)^{\nu} q^{n-\nu}+2 r\left(\frac{2 p+r}{2}\right)^{\nu}\left(\frac{q}{2}\right)^{n-\nu}}=\frac{2^{n-1} p(p+r)^{\nu}}{2^{n-1} p(p+r)^{\nu}+r(2 p+r)^{\nu}}, \\
& \operatorname{Pr}\left\{A=A O \mid \rightarrow A^{\nu} \cap A B^{n-\nu}\right\} \\
& =1-\operatorname{Pr}\left\{A=A A \mid \rightarrow A^{\nu} \cap A B^{n-\nu}\right\}=\frac{r(2 p+r)^{\nu}}{2^{n-1} p(p+r)^{\nu}+r(2 p+r)^{\nu}} .
\end{align*}
$$

The corresponding probabilities with respect to an individual of type B can be immediately written down. In fact, we have only to replace A, B, p by B, A, q, respectively. We thus get, corresponding to (3.2) and (3.2'), the following expressions

$$
\begin{align*}
& \operatorname{Pr}\left\{B=B B \mid \rightarrow B^{\nu} \cap A B^{n-\nu}\right\}=\frac{2^{n-1} q(q+r)^{\nu}}{2^{n-1} q(q+r)^{\nu}+r(2 q+r)^{\nu}}, \tag{3.3}\\
& \operatorname{Pr}\left\{B=B O \mid \rightarrow B^{\nu} \cap A B^{n-\nu}\right\}=\frac{r(2 q+r)^{\nu}}{2^{n-1} q(q+r)^{\nu}+r(2 q+r)^{\nu}} .
\end{align*}
$$

By the way, if all the n children are known merely as either A or $A B$, then the probabilities a posteriori of the individual to be homozygotic and heterozygotic are given respectively by

$$
\begin{align*}
& \operatorname{Pr}\left\{A=A A \mid \rightarrow(A \bigcup A B)^{n}\right\} \\
& =\frac{p \cdot 1^{n}}{p \cdot 1^{n}+2 r\left(\frac{1+p}{2}\right)^{n}}=\frac{2^{n-1} p}{2^{n-1} p+r(1+p)^{n}}, \tag{3.4}\\
& \operatorname{Pr}\left\{A=A O \mid \rightarrow(A \cup A B)^{n}\right\} \\
& \quad=1-\operatorname{Pr}\left\{A=A A \mid \rightarrow(A \cup A B)^{n}\right\}=\frac{r(1+p)^{n}}{2^{n-1} p+r(1+p)^{n}},
\end{align*}
$$

since an individual $A A$ produces A or $A B$ with probability

$$
\frac{\pi(A A ; A A)+\pi(A A ; A O)+\pi(A A ; A B)}{\overline{A A}}=p+r+q=1
$$

while an individual $A O$ produces A or $A B$ with probability

$$
\frac{\pi(A O ; A A)+\pi(A O ; A O)+\pi(A O ; A B)}{\overline{A A}}=\frac{p}{2}+\frac{p+r}{2}+\frac{q}{2}=\frac{1+p}{2} .
$$

Similarly, we get, by interchanging A and B, the corresponding probabilities

$$
\begin{align*}
& \operatorname{Pr}\left\{B=B B \mid \rightarrow(B \backslash A B)^{n}\right\}=\frac{2^{n-1} q}{2^{n-1} q+r(1+q)^{n}}, \tag{3.5}\\
& \operatorname{Pr}\left\{B=B O \mid \rightarrow(B \backslash A B)^{n}\right\}=\frac{r(1+q)^{n}}{2^{n-1} q+r(1+q)^{n}} .
\end{align*}
$$

Comparing (3.4) and (3.5) with (3.2) and (3.3) respectively, we notice that the inequalities

$$
\left\{\begin{align*}
& \operatorname{Pr}\left\{A=A A \mid \rightarrow A^{n}\right\}<\operatorname{Pr}\left\{A=A A \mid \rightarrow(A \bigcup A B)^{n}\right\} \tag{3.6}\\
&<\operatorname{Pr}\left\{A=A A \mid \rightarrow A B^{n}\right\}, \\
& \operatorname{Pr}\left\{B=B B \mid \rightarrow B^{n}\right\}<\operatorname{Pr}\left\{B=B B \mid \rightarrow(B \bigcup A B)^{n}\right\}
\end{align*}\right.
$$

hold good except for the trivial distributions with $p q r=0$, which correspond to (2.15).

The corresponding estimations can be made for other inherited characters in quite a similar way. We give here, making use of the notations similarly understood as above, the results on the $Q q_{ \pm}$blood type.
$(3.7)=(3.1) \quad \operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\}=\frac{2^{n-1} u}{2^{n-1} u+v(1+u)^{n}}$,

$$
\operatorname{Pr}\left\{q_{-}=q_{-} q_{-} \mid \rightarrow q_{-}^{\nu} \cap Q^{n-\nu}\right\}=\frac{2^{\nu-1} v_{1} v^{\nu}}{2^{\nu-1} v_{1} v^{\nu}+v_{2}\left(v+v_{1}\right)^{\nu}}
$$

$$
\operatorname{Pr}\left\{Q=Q q_{-} \mid \rightarrow Q^{n}\right\}=\frac{v_{1}(1+u)^{n}}{2^{n-1} u+v(1+u)^{n}}
$$

$$
\begin{array}{ll}
\operatorname{Pr}\left\{Q=Q q_{-} \mid \rightarrow Q^{\nu} \cap q_{-}^{n-\nu}\right\}=\frac{v^{n-\nu}}{v^{n-\nu}+v_{2} v_{1}^{n-\nu-1}} & (\nu<n), \\
\operatorname{Pr}\left\{Q=Q q_{+} \mid \rightarrow Q^{\nu} \cap q_{-}^{n-\nu}\right\}=\frac{v_{2} v_{1}^{n-\nu-1}}{v^{n-\nu}+v_{2} v_{1}^{n-\nu-1}} & (\nu<n) ;
\end{array}
$$

By the way, we notice finally the further probabilities

$$
\begin{equation*}
\operatorname{Pr}\left\{Q=Q Q \mid \rightarrow\left(Q \cup q_{-}\right)^{n}\right\}=\frac{2^{n-1} u}{2^{n-1}\left(u+2 v_{1}\right)+v_{2}\left(1+u+v_{1}\right)^{n}} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\text { (3.11') } \operatorname{Pr}\left\{q_{-}=q_{-} q_{+} \mid \rightarrow\left(q_{-} \cup Q\right)^{n}\right\}=\frac{v_{2}\left(1+u+v_{1}\right)^{n}}{2^{n-1} v_{1}+v_{2}\left(1+u+v_{1}\right)^{n}} . \tag{3.11}
\end{equation*}
$$

4. Lower bound for number of children.

The probability a posteriori of an individual representing a dominant character to be homozygotic has been computed in the preceding sections with or without reference to type of its spouse. Applying the results obtained, we shall now deal with a problem stated as follows: Given an individual representing a dominant character, how many children of the same type as that of the individual will suffice to presume the type of the individual to be homozygotic with a probability not less than a preassigned value? A lower bound for the number of children will be obtained by solving an inequality stating that the respective probability a posteriori is not less than the preassigned value.

Let the preassigned value be denoted by α with $0<\alpha<1$. For the case $\left\{Q=Q Q \mid \times Q \rightarrow Q^{n}\right\}$ in (2.1), the inequality

$$
\operatorname{Pr}\left\{Q=Q Q \mid \times Q \rightarrow Q^{n}\right\} \geqq \alpha
$$

is solved by

$$
\begin{equation*}
n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 v}{u}\right) / \log \frac{2(1+v)}{2+v} \tag{4.1}
\end{equation*}
$$

For instance, if $u=1 / 5$ and $v=4 / 5$, it becomes

$$
n \geqq \log \frac{8 \alpha}{1-\alpha} / \log \frac{9}{7}
$$

and further if we put $\alpha=9 / 10$ or $\alpha=4 / 5$, we get respectively

$$
\begin{gathered}
n \geqq \log 72 /(\log 9-\log 7)=17.02 \ldots \\
n \geqq \log 32 /(\log 9-\log 7)=13.79 \ldots
\end{gathered}
$$

Thus, in case, $u=1 / 5$ and $v=4 / 5$, if an individual Q accompanied by its spouse Q has produced the children of Q alone, then it may be presumed to be homozygotic with a probability greater than $9 / 10$ or $4 / 5$ provided the number of children exceeds 17 or 13 respectively. These bounds will be perhaps too large for a practical use, but a
smaller bound will be found by conceding the probability of confidence.

For the case in (2.2), the inequality $\operatorname{Pr}\left\{Q=Q Q \mid \times q \rightarrow Q^{n}\right\} \geqq \alpha$ is solved by

$$
\begin{equation*}
n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 v}{u}\right) / \log 2 \tag{4.2}
\end{equation*}
$$

For instance, if $u=1 / 5$ and $v=4 / 5$, it becomes

$$
n \geqq \log \frac{8 \alpha}{1-\alpha} / \log 2
$$

and further if we put $\alpha=9 / 10$ or $\alpha=4 / 5$, we get respectively

$$
n \geqq \log 72 / \log 2=6.17 \ldots, \quad n \geqq \log 32 / \log 2=5
$$

Thus, in case $u=1 / 5$ and $v=4 / 5$, if an individual Q accompanied by its spouse q has produced the childrea Q alone, then it may be presumed to be homozygotic with a probability greater than $9 / 10$ or not less than $4 / 5$ provided the number of children exceeds 6 or is not less than 5 , respectively.

In a similar way, we obtain, for the cases (2.3) to (2.5) concerning the $A B O$ blood type, the solution of the corresponding inequalities respectively as follows:

$$
\begin{align*}
& n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log 2 \tag{4.3}\\
& n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log \frac{2(p+2 r)}{2 p+3 r} \tag{4.4}\\
& n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log 2 \tag{4.5}
\end{align*}
$$

while we get, by solving a corresponding inequality for the case (2.6), an inequality

$$
\begin{equation*}
n-\nu \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log 2 \tag{4.6}
\end{equation*}
$$

However, in case $\nu=n$, it would here be noticed that, since the probability for $\nu=n$, i.e., $\operatorname{Pr}\left\{A=A A \mid \times A B \rightarrow A^{n}\right\}=p /(p+2 r)$ is independent of the value of n, the inequality for $\nu=n$ does always or does never hold provided the right-hand member of (4.6) is nonpositive or positive, respectively.

Similar results can also be derived for the case (2.7) to (2.10). In fact, we have only to replace p by q in (4.3) to (4.6), respectively.

The solutions of the corresponding inequalities for the cases (2.11), (2.12) become respectively

$$
\begin{equation*}
n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log 2, \quad n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log \frac{4}{3} \tag{4.7}
\end{equation*}
$$

The results on the $Q q_{ \pm}$blood type will also be derived from (2.16) to (2.26); the actual calculation will be left to the reader.

We shall now proceed to consider the corresponding problem on the probabilities a posteriori given in §3. First, for the case $\left\{Q=Q Q \mid \rightarrow Q^{n}\right\}$ in (3.1), the inequality $\operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\} \geqq \alpha$ is solved by

$$
\begin{equation*}
n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 v}{u}\right) / \log \frac{2}{1+u} \tag{4.8}
\end{equation*}
$$

For the case in (3.2), the inequality $\operatorname{Pr}\left\{A=A A \mid \rightarrow A^{\nu} \cap A B^{n-\nu}\right\} \geqq \alpha$ is solved in the form

$$
\begin{equation*}
n \geqq \nu \log \frac{2 p+r}{p+r} / \log 2+\log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log 2 \tag{4.9}
\end{equation*}
$$

In particular cases $\nu=n$ and $\nu=0$, the last inequality becomes respectively

$$
\left\{\begin{array}{l}
n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log \frac{2(p+r)}{2 p+r} \\
n \geqq \log \left(\frac{\alpha}{1-p} \frac{2 r}{p}\right) / \log 2
\end{array}\right.
$$

Similar results will also be derived with respect to (3.3).
We obtain the solution of the corresponding inequality for the case (3.4) in the form

$$
\begin{equation*}
n \geqq \log \left(\frac{\alpha}{1-\alpha} \frac{2 r}{p}\right) / \log \frac{2}{1+p} \tag{4.10}
\end{equation*}
$$

and similarly for the case (3.5).
The results on the $Q q_{ \pm}$blood type are omitted, being left to the reader.

