[Vol. 29,

23. On a Sufficient Condition for a Tensor to be Harmonic

By Zuiman YÛJôbô
Department of Mathematics, St. Paul's University, Tokyo
(Comm. by Z. Suetuna, m.J.A., March 12, 1953)

We prove the following theorem, which is an extension of Besicovitch's theorems ${ }^{11}$.

Theorem. Let α be a p-form ${ }^{2)}$ on an n-dimensional Riemannian space $C^{\infty, 2)} M$, and $a_{i_{1} i_{2} \ldots i_{p}}$ be its bounded coefficients which are defined and continuous on M except at most at the points of a set E_{1} of ($n-1$)dimensional measure 0 and further which is totally differentiable and satisfies

$$
d \alpha=\delta \alpha=0
$$

at every point except at most those of a set E_{2} expressible as the sum of an enumerable infinity of sets of finite ($n-1$)-dimensional measure; then α is harmonic (in Hodge's sense) on M.

Lemma. Suppose that F is a continuous additive function of an inlerval in the space R_{n}, such that $F(I) /[\delta(I)]^{a}$ is bounded and which fulfils the condition $\left(l_{a}\right)$ at every point except at most those of a set E_{1}^{*} of measure $\left(\Lambda_{a}\right) 0$, where I is an arbitrary interval and $0 \leqslant a<n$, and that g is a summable function. Suppose further that (i) (\mathfrak{Q}) $\underline{F}(x)>-\infty$ at every point x except at most those of a set E_{2}^{*} expressible as the sum of an enumerable infinity of sets of finite measure $\left(\Lambda_{a}\right)$, and that (ii) $(\mathfrak{Q}) \underline{F}(x) \geqslant g(x)$ at almost all points x; then

$$
F\left(I_{0}\right) \geqslant \int_{I_{0}} g(x) d x
$$

for every interval I_{0}.
A particular case of this lemma is stated in Saks' " Theory of the integral', p. 193. This lemma can be proved quite similarly. Also for the notations and the terms used in it, see this book.

Proof of the theorem. We may clearly suppose that M is a domain D on R_{n} with the coordinate-system $x_{1}, x_{2}, \ldots, x_{n},{ }^{3}$ and D contains the interval $I_{1}: 0 \leqq x_{1} \leqq 1,0 \leqq x_{2} \leqq 1, \ldots, 0 \leqq x_{n} \leqq 1$, and further

[^0]that what is to be proved is that α is harmonic (in Hodge's sense) inside I_{1}.

Now let η be an arbitrary $C^{\infty}(p-1)$-form on R_{n}, whose carrier is contained in I_{1}. We define an additive function of an interval

$$
\Phi(I)=(-1)^{a p+n+1} \int_{I \cdot I_{1}} \alpha \wedge * d \eta+\int_{B\left(I \cdot I_{1}\right)} * \alpha \wedge \eta .
$$

On account of Lebesgue's theorem, this is continuous, since the coefficients of α are bounded and E_{1} is of ($n-1$)-dimensional measure 0 . Next $\Phi(I) /[\delta(I)]^{n-1}$ is bounded, since the coefficients of α are bounded. $\mathscr{\Phi}(I)$ satisfies the condition $\left(l_{n-1}\right)$ at every point \bar{x} except at most those of the set E_{1}, since by Stokes' theorem ${ }^{4}$

$$
\Phi(I)=(-1)^{a p+\alpha+1} \int_{I I_{1}}(\alpha-\alpha(\bar{x}))<* d \eta+\int_{B\left(I \cdot I_{1}\right)} *(\alpha-\alpha(\bar{x})) \wedge \eta
$$

and the coefficients of α are continuous at \bar{x}, where $\alpha(\bar{x})$ is the p-form whose coefficients are respectively the constant values assumed by those corresponding of α at \bar{x}. We have further $(\mathfrak{Q}) \Phi(\bar{x})=0$ at every point ($\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{2}\right)$) except at most at those of the set E_{2}. In fact, since at such points the coefficients of α are totally differentiable and both $\delta \alpha$ and $d \alpha$ vanish, we have by Stokes' theorem and by virtue of the harmonicity (in Hodge's sense) of $\alpha^{*}(\bar{x})$

$$
\begin{aligned}
& \Phi(I)=(-1)^{2 n p+n+1} \int_{I \cdot I_{1}}\left(\alpha-\alpha(\bar{x})-\alpha^{*}(\bar{x})\right) \wedge * d \eta \\
&+\int_{B\left(I \cdot I_{1}\right)} *\left(\alpha-\alpha(\bar{x})-\alpha^{*}(\bar{x})\right) \wedge \eta \\
&+(-1)^{n p+n+1} \int_{I \cdot I_{1}}\left(\alpha(\bar{x})+\alpha^{*}(\bar{x})\right) \wedge * d \eta+\int_{B\left(I \cdot I_{1}\right)} *\left(\alpha(\bar{x})+\alpha^{*}(\bar{x})\right) \wedge \eta \\
&=(-1)^{n p+n+1} \int_{I \cdot I_{1}}\left(\alpha-\alpha(\bar{x})-\alpha^{*}(\bar{x})\right) \wedge * d \eta \\
&+\int_{B\left(I \cdot I_{1}\right)} *\left(\alpha-\alpha(\bar{x})-\alpha^{*}(\bar{x})\right) \wedge \eta
\end{aligned}
$$

where

$$
\alpha^{*}(\bar{x})=\sum_{i_{1}<i_{2}<\ldots<i_{p}}\left[\sum_{k=1}^{n}\left\{\left(\frac{\partial a_{i_{1} i_{2} \ldots i_{p}}}{\partial x_{k}}\right)\left(x_{k}-\bar{x}_{k}\right)\right\} d x_{i_{1}} \wedge d x_{i_{2}} \wedge \ldots \wedge d x_{i_{p}}\right]
$$

and this implies $(\mathfrak{Q}) \underline{(D}(\bar{x})=0$. By the above lemma, we have therefore

$$
\Phi\left(I_{1}\right)=\int_{I_{1}} \alpha \wedge * d \eta \geqq 0
$$

By the similar consideration of the additive function of an interval - $\Phi(I)$, we have also

$$
-\Phi\left(I_{1}\right)=-\int_{I_{1}} \alpha \wedge * d \eta \geqq 0
$$

Thus we have

$$
\begin{equation*}
\int_{I_{1}} \alpha \wedge * d \eta=0 \tag{1}
\end{equation*}
$$

4) Loc. cit. 2).

By the similar consideration of the additive function of an interval

$$
\Phi^{*}(I)=\int_{I \cdot I_{1}} \alpha \wedge * \delta \zeta+\int_{B\left(I \cdot I_{1}\right)} \alpha \wedge * \zeta
$$

defined for an arbitrary $C^{\infty}(p+1)$-form ζ whose carrier is contained in I_{1}, as above, we have

$$
\begin{equation*}
\int_{1_{1}} \alpha \wedge * \delta \zeta=0 \tag{2}
\end{equation*}
$$

In virtue of the theorem proved by Kodaira and de Rham ${ }^{5}$, it follows immediately from (1) and (2) that α is harmonic inside I_{1}, q.e.d.
5) Loc. cit. 2).

[^0]: 1) A. S. Besicovitch : On sufficient conditions for a function to be analytic and on behaviour of analytic functions in the neighbourhood of non-isolated singular points, Proc. Lond. Math. Soc. (2) 32, 1-9 (1931). The two theorems stated in this note can be brought to a combined theorem, which is a particular case of our theorem. Though this is not so difficult to see, perhaps none has remarked it. Besicovitch's original proofs are not applicable to this combined theorem.
 2) See de Rham and Kodaira: Harmonic Integrals, Mimeographed Notes, Institute for Advanced Study, Princeton (1950).
 3) The Riemannian metric defined on D is however, of course, not necessarily Euclidean.
