96. On Selberg's Function

By Yoshikazu Eda
Department of Mathematics, Kanazawa University
(Comm. by Z. Suetuna, m.J.A., Oct. 12, 1953)

1. In a recent paper, A. Selberg has achieved an elementary proof of Dirichlet's theorem about primes in an arithmetic progression ${ }^{6)}$ (numbers in square brackets refer to the references at the end of this note), and his proof is based upon the following Selberg's Inequality :

$$
\begin{equation*}
\frac{x}{k} V(x)=\sum_{p \leq x, p \equiv \lambda(k)} \log ^{2} p+\sum_{p q \leq x, p q=\lambda(k)} \log p \log q+O(x) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
V(x)=\sum_{d \leq x,(d, k)=1} \frac{\mu(d)}{d} \log ^{2} \frac{x}{d}=\frac{2}{\varphi(k)} x \log x+O(x) \tag{2}
\end{equation*}
$$

For every positive integer $k, \mu(k)$ and $\varphi(k)$ are the Möbius function and the Euler function respectively. p, q are primes and $(k, l)=1$.

We shall give in this note the generalized forms of (1) and (2) (Theorems 1, 2 and 3). Our method is based upon Selberg's original papers ${ }^{588}$, and Shapiro's ${ }^{77}$. The umbral calculus is very effective in our description of the calculations and results ${ }^{11}$. The results of our previous paper ${ }^{2)}$ are used here without proofs.

2. Preliminary Lemmas and Notions

Lemma 1. For every integers k and i, the number theoretic function $[k]^{i} \geqq 0$ with the following initial conditions: $k \geqq 0, k \geqq i$, $[0]^{i}=1$ for $i=0,1,1 /|i|$! for $i<0$ and $[k]^{i}=0$ for $k<i$, is defined by the recurrence formula $[k]^{i}=[k-i]^{i}+i[k-1]^{i-1}$. Then, we get $[k]^{i}$ $=k!/(k-i)!(i>0) .[k]^{i}(i$ 安 0$)$. is said the factorial polynomial in k degree i.

Lemma 2.

$$
\sum_{i=l+m}^{k}(-1)^{4}[i]^{m}\binom{k}{{ }_{i}}\binom{i-m}{l^{2}}= \begin{cases}0, & \text { for } k \neq l+m, \\ (-1)^{k}[k]^{k-l}, & \text { for } k=l+m,\end{cases}
$$

where $\binom{k}{i}=[k]!/ i!, k \geqq i \geqq 0$ is the binomial coefficient.
Lemma 3. λ_{n} is a partition of n and if there are m_{1} parts equal to $1, m_{2}$ parts equal to $2, m_{3}$ parts equal to 3 , etc., then the partition may be written $\operatorname{as}^{4)} \lambda_{n}=\left(1^{m_{1}} 2^{m_{2}} 3^{m_{3}} \ldots\right), m_{i} \geqq 0$, and we put $m=\sum_{l=1}^{m} m_{i}, p\left(\lambda_{n}\right)=m!/ m_{1}!m_{2}!\ldots m_{n}!=\left(m_{1}, m_{2}, \cdots m_{n}\right)$. We associate a monomial $M\left(\lambda_{n}, x\right)=M\left(\lambda_{n}, x_{1}, \ldots, x_{n}\right)=x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{n_{2}}$ with a partition $\lambda_{n_{2}}$. Put $A^{n}=A^{n}(x)=A^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\lambda_{n}} p\left(\lambda_{n}\right) M\left(\lambda_{n}, x\right)$, then, we have $A^{n}=\sum_{j=1}^{n} x_{j} A^{n-j}$.

If the number theoretic function $f(j, k)$ is defined by the following initial conditions: $f(l, l-1)=l$ for $l \geqq 2, f(l, i)=0$ for $i \geqq l$, and $f(1,0)=0$, and the recurrence formula

$$
f(j, k)=k \sum_{i=j+1}^{k-1}(-1)^{k-1}\left(_{i}^{k-1}\right) x_{k-i} f(j, i), \quad 1 \leqq j \leqq k-2,
$$

then $f(j, k)=(-1)^{k-1-j}[k]^{k-j} A^{k-1-j}(y)$, where $y_{j}=x_{j} /(j-1)!, 1 \leqq j \leqq n$.
Proof. (Y. Eda ${ }^{2)}$), lemmas 3, 4, 5 and 6.
We must develop the Bell's umbral calculus a little, but it will be reserved for another occasion for further particulars. The functional umbra $X(a)$ is denoted by the one-rowed matrix $X(a) \equiv$ $\left(X^{0}(\alpha), X^{1}(\alpha), \ldots, X^{i}(\alpha), \ldots\right)=\left(X^{i}(\alpha)\right)$, where $X^{i}(\alpha)(i=0,1,2, \ldots)$ are scalars (real numbers) or any number theoretic function of a, and the $(n+1)$-th element of $X(a)$ is denoted by $(X(a))_{n} . \quad X(a)=(X(a)$, $X(a), \ldots)$ is called a constant umbra. Equality of umbra is matric equality and scalar product, $\alpha X(\alpha)$ of α (scalar) and $X(a)$ is $\alpha X(\alpha) \equiv\left(\alpha X^{\prime \prime}(a)\right)$. The umbral sum (difference) of $X(a)$ and $Y(a)$ is $X(a) \oplus{ }_{\ominus} X(a) \equiv\left(X^{n}(\alpha) \pm Y^{n}(a)\right)$. If $X(\alpha), Y(a), \ldots, Z(a)$ are t distinct umbrae, $[X(\alpha) \oplus Y(\alpha) \oplus \cdots \oplus Z(\alpha)]^{i}$ denotes the scalar $P^{i}(\alpha)=$ $\sum_{i_{1}+\cdots+i_{t}=i}\left(i_{1}, \ldots, i_{t}\right) X^{i_{1}}(\alpha) \ldots Z^{i_{t}}(\alpha)$. Note that exponents and suffixes 0,1 are to be indicated precisely in the same way as exponents and suffixes >1. If an umbra $X(a)$ in our region is transformed into another umbra $Y(a)$ by a mapping T, we write this fact as follows : $T X(a)=Y(a), Y^{i}(\alpha)=T X^{i}(a)$. T is called an umbral operator. A scalar in the scalar product is an umbral operator. The operator product $T_{2} T_{1}$ of T_{1} and T_{2} is defined by $T_{2} T_{1} X(a)=$ $T_{2}\left(T_{1} X(a)\right)$. If we put $T \equiv \sum_{a \in \Omega_{2}} F(a)$ and $T X(a)=\sum_{a \in \Omega} F(a) X(a)=$ ($\sum_{a \in \Omega} F^{i}(a) X^{i}(a)$), then T is treated as an umbral operator and we call this a \sum-operator. If T is T-invarient i.e. $T A=A$, then $T[X(a) \oplus A]^{n}=[T X(a) \oplus A]^{n}$. $\quad I$-operator of an umbra is defined by the formula $I X(\alpha)=Y(\alpha), \quad Y^{n}(\alpha)=\frac{1}{n+1} X^{n+1}(\alpha)$. If $F(x)=\left(F^{i}(x)\right)$ and $\lim _{x \rightarrow a} F^{i}(x)=F^{i}(a), \quad\left(F(a)=\left(F^{i}(a)\right)\right)$, then we write $\lim _{x \rightarrow a} F(x)=\left(\lim _{x \rightarrow a}\right.$ $\left.F^{i}(x)\right)$. And, still more, if $F^{i}(x)=f^{i}(x)+O\left(R^{i}(x)\right)$, then we must write $F(x)=(f(x) \oplus O(R(x))$.

Now, we define some \sum-operators as follows: $G_{x}=\sum_{d \leq x} 1$, $D_{a}=\sum_{d \mid a} 1, E_{x, \pi}=\sum_{d \leq x,(d, a)=1} 1, A_{x, a, \lambda}=\sum_{d \leq x, d=\lambda(n)} 1, \bar{G}_{x}=G_{x} \mu(d), \bar{D}_{a}=D_{a} \mu(d)$, $\bar{E}_{x}=E_{x, \alpha} \mu(d), \bar{A}_{x}=A_{x} \mu(d), G_{x}^{*}=G_{x} \frac{1}{d}, D_{a}^{*}=D_{a} \frac{1}{d}, E_{x}^{*}=E_{x} \frac{1}{d}, A_{x}^{*}=A_{x} \frac{1}{d}$, $U(x)=\bar{G}^{*} L(d), \quad K(a)=\bar{D}^{*} L(d), \quad V(x)=\bar{E}^{*} L(d), \quad W(x)=\bar{A}^{*} L(d)$, where $L(x)$ is the \log i.e. $L^{i}(x)=\log ^{i} x$. Then we have (as an operator product), $E_{x}^{*}=G_{x}^{*} D_{(d, a)} \mu(d)$. If we put $\Theta(a, x)=\bar{D} L\left(\frac{x}{d}\right)$,
then

$$
\begin{equation*}
A_{x, n, \lambda} \Theta(a, x)=\frac{\lambda}{a} \bar{E} L\left(\frac{x}{d}\right) \oplus O(x)=\frac{x}{a} V(x) \oplus O(x) . \tag{3}
\end{equation*}
$$

If we use the \sum-operator as an ordinary summation, there is no confusion in our calculation. For example, $\bar{D}^{*} 1=\frac{\phi(\alpha)}{a}=K^{0}(\alpha)$ $=K, \bar{E}^{*} \cdot 1=V^{0}(x)=V=O(1)$, (E. Landau ${ }^{3)}$, p. 568), $V^{k}(x)=V^{k}=$ $O\left(L^{k-1}(x)\right)$, (Y. Eda ${ }^{2}$, lemma 11).

Lemma 4. N denotes the number of different prime factors of a and we put $\Theta(a, x)=\bar{D} L\left(\frac{x}{d}\right), n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{N}^{m_{N}}$, then we get $\Theta(\alpha, x)$ $=k!\prod_{i=1}^{k} L\left(p_{i}\right)$ for $N=k, \Theta^{k}(a, x)=0$ for $N>k$. And we get

$$
\left.A_{x, \alpha, \lambda} \Theta^{k}(a, x)=\sum_{j=0}^{k}(-1)^{j}\left[\sum_{l=0}^{N-1}(-1)^{l}\left(a_{1} \cdots a_{l}\right)_{p_{1} \cdots p_{l}}^{k}\right) \sum_{l} \vartheta\left(\alpha_{1}, \ldots, \alpha_{l} ; a_{1} \ldots a_{l} ; x\right)\right] L^{k-j}(x)
$$

where

$$
\vartheta\left(\boldsymbol{\alpha}_{1} \ldots \boldsymbol{\alpha}_{l}, \alpha_{1} \ldots \alpha_{l}, x\right)=\sum_{p_{1}^{\alpha_{1}} \ldots p_{l}} \sum_{\alpha_{l} \leq x, \text { and }=\lambda(\text { mod } a)} L^{a_{1}}\left(p_{1}\right) \ldots L^{a_{l}}\left(p_{l}\right)
$$

and $d \equiv x(\bmod a) .\left(\mathrm{Y} . E d a^{2)}\right)$, lemma 2 and lemma 14.
Lemma 5.

$$
G_{x}^{*} L(d)=I L(x) \oplus C \oplus O\left(\frac{L(x)}{x}\right)
$$

where $C=\lim _{x \rightarrow \infty}\left(G_{x}^{*} L(d) \ominus I L(x)\right)$, which is called the Euler umbra and C° denotes the ordinary Euler constant.

Proof. (E. Landau ${ }^{3)}$), 27, Hilfssatz.
Lemma 6. (Stirling's formula) $G_{x} L(d)=x\left([L(x) \ominus[k]]^{k}\right)$.
Proof. (Y. Eda ${ }^{2)}$), lemma 7.
Lemma 7. $\quad I V(x)=O(L(x))$.
Proof. See Y. Eda ${ }^{2)}$, lemma 11.

3. Proof of the Theorems

Lemma 8.

$$
E_{a, x}^{*} L(d)=K^{0} I L(x) \ominus I K \oplus\left([K \oplus C) \oplus O\left(\frac{L(x)}{x}\right)\right.
$$

Proof.

$$
E_{a, v}^{*} L(d)=G_{x}^{*} L(d) D_{(n, n)}=\left(\left[K_{n}^{0} Z \oplus 1\right]\right)=U(x),
$$

where

$$
\begin{aligned}
K_{a}^{0} Z^{i} & =K_{a}^{0} G_{x / \delta}^{*} L^{i}(t) L^{k-i}(\delta) \\
& =[i]^{-1} \sum_{j=0}^{i+1}(-1)^{i+1-j}\binom{i+1}{j} K_{a}^{k+1-j} L^{j}(x)+K_{a}^{k-i} C^{i}+O\left(\frac{L^{k}(x)}{x}\right),
\end{aligned}
$$

and so, we obtain from lemma 2,

$$
U^{k}(x)=[k]^{-1} K^{0} L^{k+1}(x)-[k]^{-1} K^{n+1}+[K \oplus C]^{k}+O\left(\frac{L^{k}(x)}{x}\right)
$$

Lemma 9.

$$
1 \leqq \lambda \leqq a-1
$$

$$
A_{x,, \mathrm{a}} L(d)=\frac{x}{a}\left((L(x) \Theta k]^{6}\right) \oplus O(L(x))=\frac{1}{a} G_{x} L(n) \oplus O(L(x)) .
$$

Proof. From lemma 6, we get

$$
\begin{aligned}
A L^{k}(d) & =\sum_{i=0}^{k}\left({ }_{6}^{k}\right) L^{k-i}(a)\left[L\left(\frac{x}{a}\right) \ominus[i]\right]^{k}+O\left(L^{k}(x)\right) \\
& =\frac{x}{a}[L(x) \Theta[k]]^{k}+O\left(L^{k}(X)\right) .
\end{aligned}
$$

Lemma 10.

$$
E_{x, a} A_{\frac{x}{d^{2}, \lambda, a}} L\left(d^{\prime}\right)=\frac{x}{a} I\left(\left[V(x)-[k]^{6}\right]\right) \oplus O(L(x)) .
$$

Lemma 11.
$E_{d, c}^{*} L\left(\frac{x}{d}\right)=I\left(\left[L(x) \ominus K_{a}\right]\right) \oplus\left([L(x) \ominus[K \oplus C]) \oplus O\left(\frac{L(x)}{x}\right)\right.$.
Proof.

$$
E_{i, s}^{*} L\left(\frac{x}{d}\right)=E^{*}([L(x) \ominus L(d)])=\left(\left[L(x) \ominus E^{*} L(d)\right]\right)
$$

From lemma 7, we get the result.
Theorem 1.

$$
I([V \ominus K]) \oplus([V \ominus[K \oplus C]]) \ominus L(x)=O(1)
$$

Proof. If $F^{\prime}(x)$ is any real valued functional umbra, defined for all real $x>0$, and $G(x)$ is defined by $G(x)=E_{c, s}^{\prime} F\left(\frac{x}{d}\right)$, then $F(x)=\bar{E}_{x, G} G\left(\frac{x}{d}\right)$. Put $F(x)=x(L(x))$ in this lemma, then

$$
G(x)=x(I[L(x) \Theta K]) \oplus([L(x) \ominus[K \oplus C]]) \oplus O(L(x)),
$$

and we get our result.
Remark. We can solve this equality generally. In other words, $V(x)$ is represented by a permanent ${ }^{t)}$, whose elements are $\lambda L^{i}(x)$, (λ is scalar), ((Y. Eda ${ }^{2}$) lemma 12 and lemma 13).

Theorem 2.

$$
I V(x)=([L(x) \ominus B]) \oplus O(1)
$$

where $B^{l}=[k]^{l} A^{l}(y)$, (A^{l} in lemma 3), $y_{j}=\Lambda^{j} / K(j-1)$, and $\Lambda=I K \Theta$ ($[K \oplus C]$).

Proof. From our theorem 1, we get

$$
K^{\wedge} I V(x)=([V(x) \ominus \Lambda]) \oplus L(x) \oplus O(1) .
$$

Now, assume $V^{i}(x)=\sum_{j=1}^{i-1} \gamma_{i}^{j} L(x)+O(1)$, then we get the recurrence formula and initial conditions for γ_{l}^{3}, and we have easily from the lemma 3 our desired form.

Theorem 3. (Selberg's Inequality)

$$
A_{x} \Theta(a, x)=\frac{x}{a} V(x) \oplus O(x),
$$

where $\Theta(a, x)$ and $V(x)$ are given by lemma 4, lemma 5 and theorem 2.
Proof. We have the result immediately from (3), lemma 5 and theorem 2. ${ }^{\text {b }}$

References

1) E.T. Bell: Postulational Bases for the Umbral Calculus, Amer. J. Math., 62, 717-724 (1940).
2) Y. Eda: On the Selberg's Inequality, Sci. Rep. Kanazawa Univ., 2, 7-13 (1953).
3) E. Landau : Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, 2 (1909).
4) D. E. Littlewood: The Theory of Group Characters and Matrix Representations of Groups, Oxford, 2nd ed. (1940).
5) A. Selberg : An Elementary Proof of Dirichlet's Theorem about Primes in an Arithmetic Progression, Ann. Math., 50, 297-304 (1949).
6) A. Selberg : An Elementary Proof of the Prime Number Theorem, Ann. Math., 50, 305-313 (1949).
7) H. N. Shapiro : On Primes in Arithmetic Progressions. I, Ann. Math., 52, 485-497 (1951).
