122. A Necessary Unitary Field Theory as a Non-Holonomic Parabolic Lie Geometry Realized in the Three-Dimensional Cartesian Space

By Tsurusaburo Takasu
(Comm. by Z. Suetuna, M.J.A., Dec. 14, 1953)

The geometry based upon is the author's non-holonomic parabolic Lie geometry ${ }^{3)}{ }^{*)}$, which is situated among other branches of geometry as follows: (Euclidean geometry): (Non-Euclidean geometry) $=($ parabolic Lie geometry): (Lie geometry) $=$ (nonholonomic parabolic Lie geometry): (non-holonomic Lie geometry). Instead of the quadratic differential form :

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=g_{\underline{\mu \nu}} d x^{\mu} d x^{\nu}+g_{\underline{\mu}} d x^{\mu} d x^{\nu} \tag{0.1}
\end{equation*}
$$

we take the linear vector form

$$
\begin{equation*}
\gamma_{5} \omega^{5}=\gamma_{l} \omega^{l},\left(\omega^{l}=\omega_{\mu}^{l} d x^{\mu}, l=1,2,3,4\right), \tag{0.2}
\end{equation*}
$$

such that
(0.3)

$$
d s d s=\omega^{5} \omega^{5}=\omega^{l} \omega^{l},
$$

where in Einstein's notation ${ }^{1)}$ we have

$$
\begin{equation*}
g_{\underline{\mu \nu}}=\omega_{\mu \nu}^{l} \omega_{\nu}^{l}, \tag{0.4}
\end{equation*}
$$

$$
\begin{equation*}
g_{\mu \nu}=\gamma_{4} \gamma_{1}\left(\omega_{\mu}^{4} \omega_{\nu}^{1}-\omega_{\nu}^{4} \omega_{\mu}^{1}\right)+\cdots+\gamma_{2} \gamma_{3}\left(\omega_{\mu}^{2} \omega_{\nu}^{3}-\omega_{\mu}^{3} \omega_{\nu}^{2}\right) \cdots+, \tag{0.5}
\end{equation*}
$$

and

$$
\begin{gather*}
\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=-\gamma_{4}^{2}=\gamma_{5}^{2}=1, \gamma_{4}=i \gamma_{5}, \gamma_{2} \gamma_{3}+\gamma_{3} \gamma_{2}=0, \text { etc., } \tag{0.6}\\
\gamma_{4} \gamma_{1}+\gamma_{1} \gamma_{4}=0, \text { etc., } \gamma_{5} \gamma_{1}+\gamma_{1} \gamma_{5}=0, \text { etc. },
\end{gather*}
$$

the $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{5}$ being the Pauli's $4-4$-matrices. Starting from (0.2) and pursuing necessities stepwise, the author will develop a unitary field theory.

1. Realization of the Non-Holonomic Parabolic Lie Geometry in the Cartesian Space. The said geometry will be realized in the three-dimensional Cartesian space provided with the Cartesian coordinates $\left(\xi^{i}\right),(i=1,2,3)$, such that

$$
\begin{gather*}
d \xi^{l}=\omega^{l} \tag{1.1}\\
d \xi^{4}=\omega^{4}=d r \tag{1.2}
\end{gather*}
$$

the r being the radius of the oriented sphere with center $P\left(\xi^{t}\right)$. We adopt a double use for $d s$: a vector (0.2) with components the common tangential segment $\omega^{\boldsymbol{l}}$ 。 $d s=i d S$ of the oriented sphere (P, r) with its consecutive one.
The quantity $d s=i d S$ is purely imaginary, when

[^0]$$
d \xi^{i} d \xi^{i}-d r^{2}=d \sigma^{2}-d r^{2}<0
$$

If we put

$$
\begin{equation*}
\mathfrak{u}^{l}=\frac{\omega^{l}}{d \sigma}, \quad \mathfrak{u}^{\delta}=\frac{\omega^{5}}{d \sigma}, \quad\left(d \sigma^{2}=\omega^{i} \omega^{i}\right), \tag{1.3}
\end{equation*}
$$

the condition (0.3) may be rewritten :

$$
\begin{equation*}
\mathfrak{u}^{A} \mathfrak{u}^{A}=0, \quad(A=1,2, \ldots, 5) . \tag{1.4}
\end{equation*}
$$

2. Problem (Two Particles Problem). We consider two particles O and P respectively charged with rest-masses \bar{m}_{0}, m_{0} and with constant electricity $-\bar{e},-e$, which make motions relative to each other. Then both O and P emit gravitational energy and electric energy spherically. The law of motion is required. In Art. 4, this problem will be solved.
3. General-Relativistically Generalized Maxwell's Equations. Introducing the notations: $\phi^{i}=$ electromagnetic vector potential, ($i=1,2,3$) ; $-\phi^{4}=$ electrostatic potential ; $\sigma^{i}=$ current components ; $\sigma^{4}=$ electric density, $\Phi=\gamma_{l} \phi^{2}, J=-\gamma_{i} \sigma^{i}+\gamma_{4} \sigma^{4}, X^{i}=$ electric intensity, $\alpha^{i}=$ magnetic intensity, the author has proved ${ }^{2)}$ that the eight components of the single equation

$$
\begin{equation*}
4 \frac{\partial^{2} \Phi}{\omega^{6} \omega^{5}}=J \tag{3.1}
\end{equation*}
$$

are the general-relativistically generalized Maxwell's equations:

$$
\begin{cases}\frac{\partial X^{i}}{\omega^{i}}=\sigma^{4}, & -\frac{\partial X^{i}}{\omega^{4}}-\left(\frac{\partial \alpha^{j}}{\omega^{k}}-\frac{\partial \alpha^{k}}{\omega^{j}}\right)=\sigma^{i} \tag{3.2}\\ \frac{\partial \alpha^{i}}{\omega^{i}}=0, & \frac{\partial \alpha^{i}}{\omega^{4}}-\left(\frac{\partial X^{j}}{\omega^{k}}-\frac{\partial X^{k}}{\omega^{j}}\right)=0\end{cases}
$$

4. Solution of the Problem Stated in Art. 2. Take a Cartesian system (ξ^{i}) with the position of the first particle O as origin. Then we can put ${ }^{2)}$:

$$
\begin{equation*}
d \xi^{l}=\omega^{l}, \quad d \xi^{4}=\omega^{4}=d r \tag{4.1}
\end{equation*}
$$

where r is the radius of the oriented sphere with center (ξ^{i}), which is the energy level emitted from the particle $P\left(\xi^{i}\right)$. In case $d \sigma^{2}-d r^{2}<0$, the sphere (P, r) encloses the particle O, which emits gravitational energy due to \bar{m}_{0} and electric energy due to $-\bar{e}$ spherically, the energy level being the sphere (O, S) with center O and radius S. Put

$$
\begin{align*}
& \text { (4.2) } \quad E=\frac{d r}{d t}=\text { radial energy emitted from } P \tag{4.2}\\
&=\text { radial velocity of the energy level }(P, r), \\
& \text { (4.3) } \quad \bar{E}=\frac{d S}{d t}=\text { radial energy emitted from } O \tag{4.3}\\
&=\text { radial velocity of the energy level }(O, S), \\
& \\
& \bar{\phi}^{i} \\
& \text { Letectromagnetic vector potential for } O, \\
&(4.4) e \phi^{5} \\
& \text { (4.5) } \bar{e} \bar{\phi}^{4}\left.=m_{0} \text { (gravitational static potential for } P\right), \\
&\text { (gravitational static potential for } O),
\end{align*}
$$

(4.6) $\quad p^{i}=$ momentum components for P,
(4.7) $\quad \bar{p}^{i}=$ momentum components for O,
(4.8) $E p^{4}=$ total energy for P in case of no gravitation,
(4.9) $E p^{5}=$ total energy for O in case of no gravitation,
(4.10) $E p^{5}=$ total energy of P for the case of no electric field
$=E$ times the corresponding momentum,
(4.11) $\bar{E} \bar{p}^{4}=$ total energy for O in case of no electric field $=\bar{E}$ times the corresponding momentum.
Then

$$
\begin{align*}
& \left(E p^{i}+e \phi^{i}+E \bar{p}^{i}+\bar{e} \bar{\phi}^{i}\right)=\left(m E^{2} \frac{d \sigma}{d r}+\bar{m} \bar{E}^{2} \frac{d \sigma}{d S}\right) \mathfrak{u}^{i}, \tag{4.12}\\
& \left(E p^{4}+e \phi^{4}+\bar{E} \bar{p}^{4}+\bar{e} \bar{\phi}^{4}\right)=\left(m E^{2} \frac{d \sigma}{d r}+\bar{m} \bar{E}^{2} \frac{d \sigma}{d S}\right) \mathfrak{u}^{4}, \\
& \left(E p^{5}+e \phi^{5}+\bar{E} \bar{p}^{5}+\bar{e} \bar{\phi}^{5}\right)=\left(m E^{2} \frac{d \sigma}{d r}+\bar{m} \bar{E}^{2} \frac{d \sigma}{d S}\right) \mathfrak{u}^{5},
\end{align*}
$$

where $m=m_{0} \frac{d r}{d S}$ and $\bar{m}=\bar{m}_{0} \frac{d S}{d r}$ are longitudinal masses. (4.12), (4.13), (4.14) and (0.2) with $\omega^{5}=\omega_{\mu}^{5}\left(x^{2}\right) d x^{\mu}$ give
(4.15) $\quad \gamma_{l}\left(E p^{l}+e \phi^{l}+\bar{E} \bar{p}^{l}+\bar{e} \bar{\phi}^{l}\right)=\gamma_{5}\left(E p^{5}+e \phi^{5}+\bar{E} \bar{p}^{5}+\bar{e} \bar{\phi}^{5}\right)$.

For $\gamma_{l} \phi^{l}-\gamma_{5} \phi^{5}=\Psi, \gamma_{l} p^{2}-\gamma_{5} p^{5}=P$, etc., (4.15) becomes

$$
\begin{equation*}
E p+e \Psi+\bar{E} \bar{p}+\bar{e} \bar{\Psi}=0 \tag{4.16}
\end{equation*}
$$

Applying the operator

$$
\begin{equation*}
2 \gamma_{5} \frac{\partial}{\omega^{5}}=\gamma_{l} \frac{\partial}{\omega^{l}}=\gamma_{l} \frac{\partial}{\partial \xi^{l}} \tag{4.17}
\end{equation*}
$$

to (4.16), we have

$$
\begin{align*}
2 \gamma_{5} \frac{\partial}{\omega^{6}} & (E P+e \Psi+\bar{E} \bar{P}+\bar{e} \bar{\Psi})=\frac{\partial}{\omega^{l}}\left(E p^{l}+e \phi^{l}+E \bar{E} \bar{p}^{l}+\bar{e} \bar{\phi}^{l}\right) \tag{4.18}\\
& -\gamma_{4} \gamma_{i}\left(\mathscr{X}^{i}+e X^{i}+\overline{X^{i}}+\bar{e} \bar{X}^{i}\right)+\gamma_{j} \gamma_{k}\left(a^{i}+e \alpha^{i}+\bar{a}^{i}+\bar{e} \bar{\alpha}^{b}\right) \\
& -2 \frac{\partial}{\omega^{5}}\left(E p^{5}+e \phi^{5}+\bar{E} \bar{p}^{5}+\bar{e} \bar{\phi}^{b}\right)=0,
\end{align*}
$$

where

$$
\begin{align*}
X^{i} & =\frac{\partial\left(E p^{4}\right)}{\omega^{i}}+\frac{\partial\left(E p^{i}\right)}{\omega^{4}}, \text { etc. }, \tag{4.19}\\
a^{i} & =\frac{\partial\left(E p^{k}\right)}{\omega^{j}}-\frac{\partial\left(E x^{j}\right)}{\omega^{i}}, \text { etc. }, \tag{4.20}\\
X^{i} & =\frac{\partial \phi^{4}}{\omega^{i}}+\frac{\partial \phi^{i}}{\omega^{4}}, \text { etc. }, \tag{4.21}\\
\boldsymbol{\alpha}^{i} & =\frac{\partial \phi^{k}}{\omega^{j}}-\frac{\partial \phi^{j}}{\omega^{i}}, \text { etc. } \tag{4.22}
\end{align*}
$$

Introducing the continuity condition

$$
\begin{equation*}
\frac{\partial}{\omega^{l}}\left(E p^{l}+e \phi^{l}+E \overline{p^{l}}+\bar{e} \bar{\phi}^{l}\right)-2 \frac{\partial}{\omega^{5}}\left(E p^{5}+e \phi^{5}+\bar{e} \bar{p}^{5}+e \bar{\phi}^{5}\right)=0 \tag{4.23}
\end{equation*}
$$

and applying (4.17) once more, we obtain the generalization of the Maxwell's equations:

$$
\begin{align*}
& \frac{\partial}{\omega^{i}}\left(\mathscr{X}^{i}+e X^{i}+\overline{X^{i}}+\bar{e} \bar{X}^{i}\right)=\varepsilon^{4}+\sigma^{4}+\bar{\varepsilon}^{4}+\bar{\sigma}^{4}, \tag{4.24}\\
& \frac{\partial}{\omega^{i}}\left(a^{i}+e \alpha^{i}+\bar{a}^{i}+\bar{e} \bar{a}^{i}\right)+\frac{\partial}{\omega^{j}}\left(\mathscr{C}^{k}+e X^{k}+\overline{\left.\mathscr{C}^{k}+\bar{e} \bar{X}^{k}\right)}\right. \tag{4.25}\\
& \quad-\frac{\partial}{\omega^{b}}\left(\mathscr{X}^{j}+e \mathscr{C}^{j}+\overline{\mathscr{X}}^{j}+\bar{e} \bar{X}^{j}\right)=0, \\
& \frac{\partial}{\omega^{j}}\left(a^{k}+e \alpha^{k}+\bar{a}^{k}+\bar{e} \bar{\alpha}^{k}\right)-\frac{\partial}{\omega^{k}}\left(a^{j}+e \alpha^{j}+\bar{a}^{j}+\bar{e} \bar{\alpha}^{j}\right) \tag{4.26}\\
& \quad-\frac{\partial}{\omega^{4}}\left(\mathscr{X}^{i}+e X^{i}+\overline{\mathscr{C}}^{i}+\bar{e} \bar{X}^{i}\right)=\varepsilon^{i}+\sigma^{i}+\bar{\varepsilon}^{i}+\bar{\sigma}^{i}, \\
& \frac{\partial}{\omega^{i}}\left(a^{i}+e \alpha^{i}+\bar{a}^{i}+\bar{e} \bar{\alpha}^{i}\right)=0, \tag{4.27}
\end{align*}
$$

where $\varepsilon^{4}=$ gravitational density due to $P, \bar{\epsilon}^{4}=$ gravitational density due to $O, \varepsilon^{i}=$ components of "gravitational current" due to $P, \bar{\varepsilon}^{i}$ $=$ those due to O. Perhaps $\varepsilon^{i}, \bar{\varepsilon}^{i}, \varepsilon^{4}$ and $\bar{\varepsilon}^{4}$ will be very small compared with $\sigma^{i}, \bar{\sigma}^{i}, \sigma^{4}$ and $\bar{\sigma}^{4}$ respectively.
5. Generalized Dirac Equations. Put

$$
\begin{gather*}
\psi=2 \gamma_{5} \frac{\partial}{\omega^{5}}(E P+e \Psi+\bar{E} \bar{P}+\bar{e} \bar{\Psi}) \tag{5.1}\\
=-\gamma_{k} \gamma_{i}\left(\mathscr{P}^{i}+e X^{i}+\overline{\mathscr{X}}^{i}+\bar{e} \bar{X}^{i}\right)+\gamma_{j} \gamma_{k}\left(\alpha^{i}+e \alpha^{i}+\bar{a}^{i}+\bar{e} \bar{\alpha}^{i}\right),
\end{gather*}
$$

and applying (4.17) once more, we obtain

$$
\begin{equation*}
4 \frac{\partial^{2}}{\omega^{4} \omega^{4}}(E P+e \Psi+\bar{E} \bar{P}+\bar{e} \bar{\Psi}) \equiv 2 \gamma_{5} \frac{\partial \psi}{\omega^{5}} \equiv \gamma_{l} \frac{\partial \psi}{\omega^{l}}=0 \tag{5.2}
\end{equation*}
$$

which leads us to the generalized Dirac equation :

$$
\begin{equation*}
\left[\gamma_{l}\left(\frac{h}{2 \pi i} \frac{\partial}{\omega^{l}}+e \phi^{l}+\frac{h}{2 \pi_{i}} \bar{E} \frac{\partial}{\omega^{l}}+\bar{e} \bar{\phi}^{l}\right)+\gamma_{5}\left(m_{0} E+\bar{m}_{0} \bar{E}\right)\right] \psi=0 \tag{5.3}
\end{equation*}
$$ by a process similar to the usual one.

Applying (4.17) once more, we obtain

$$
\begin{equation*}
8 \frac{\partial^{3}}{\omega^{5} \omega^{5} \omega^{5}}(E P+e \Psi+\bar{E} \bar{P}+\bar{e} \bar{\Psi}) \equiv 4 \frac{\partial^{2}}{\omega^{5} \omega^{5}} \psi=\gamma_{k} \frac{\partial}{\omega^{k}} \gamma_{l} \frac{\partial}{\omega^{l}} \psi=0, \tag{5.4}
\end{equation*}
$$

which leads us to a generalized Schrödinger equation.

References

1) Einstein, A.: The Meaning of the Relativity. Fourth Edition Appendix 2 (1953).
2) Takasu, T.: The General Relativity as a Three-Dimensional Non-Holonomic Laguerre Geometry, Its Gravitation Theory and Its Quantum Mechanics. The Yokohama Math. Jour., 1, 89-104 (1953).
3) Takasu, T.: A Combined Field Theory as a Three-Dimensional NonHolonomic Parabolic Lie Geometry and Its Quantum Mechanics. The Yokohama Math. Jour., 1, 105-116 (1953).

[^0]: *) The ciphers in the square brackets refer to the References attached to the end of this paper.

