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122. A Necessary Unitary Field Theory as a
Non-Holonomic Parabolic Lie Geometry
Realized in the Three-Dimensional
Cartesian Space

By Tsurusaburo TAKASU
(Comm. by Z. SUETUNA, M.J.A., Dec. 14, 1953)

The geometry based upon is the author’s non-holonomic para-
bolic Lie geometry®*, which is situated among other branches
of geometry as follows: (Euclidean geometry): (Non-Euclidean
geometry) = (parabolic Lie geometry): (Lie geometry) = (non-
holonomic parabolic Lie geometry): (non-holonomic Lie geometry).
Instead of the quadratic differential form :

0.1) ds’ = guda'da’ = gudatde’ + g@,dw“‘dx” ,
we take the linear vector form

(0.2) Y0' = 70", (0 = eohda*, 1 =1,2,8,4),
such that

(0.3) dsds = 0’0’ = o'e’,
where in Einstein’s notation® we have

0.4) G = oL@,

0.5)  gu=vm(ehe}—wlwp)+ -+ +Vswhel —opwl): - -+,
and

(0.6) Vi=yi=vi= —vi=elt=1, v,=ivs, 77 +77=0, etc.,

Yo+ 7ve=0, ete., yr+vv,=0, ete.,
the 7y, 7,, 75, Vs being the Pauli’s 4-4-matrices. Starting from (0.2)
and pursuing necessities stepwise, the author will develop a
unitary field theory.

1. Realization of the Non-Holonomic Parabolic Lie Geometry in
the Cartesian Space. The said geometry will be realized in the
three-dimensional Cartesian space provided with the Cartesian
coordinates (&%), (2=1, 2, 8), such that

1.1 dét = o',

(1.2) d¢t = o = dr,
the » being the radius of the oriented sphere with center P(¢).
We adopt a double use for ds:

a vector (0.2) with components | the common tangential segment
. ds=1idS of the oriented sphere

(P, ) with its consecutive one.
The quantity ds=1dS is purely imaginary, when

% The ciphers in the square brackets refer to the References attached to the
end of this paper.
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d§'d§ —dr*=ds* - dr*<0.

If we put l .

(1.8) u = 2’0 , w= —C“—l’; , (dd® = '),
the condition (0.8) may be rewritten :

(1.4) =0, 4=12,...,5).

2. Problem (Two Particles Problem). We consider two particles
O and P respectively charged with rest-masses #i,, m, and with
constant electricity —e, —e, which make motions relative to each
other. Then both O and P emit gravitational energy and electric
energy Spherically. The law of motion is required. In Art. 4, this
problem will be solved.

3. General-Relativistically Generalized Maxwell’s FEquations.
Introducing the notations: ¢*=electromagnetic vector potential,
(t=1, 2, 8); —¢*=electrostatic potential; o’=current components;
o*=-electric density, d=7¢", J= —v,o'+v.0*, X*=electric intensity,
o'=magnetic intensity, the author has proved® that the eight
components of the single equation

8.1) 1280 g

@ w
are the general-relativistically generalized Maxwell’s equations:

BX 43X _(aa" _ aa’“>___ai
4 ’ (D‘ wlc wj ’

(8.2)

w
8t _ aaﬁ__(aXf_an>=O
' ’ ot P o :

4. Solution of the Problem Stated in Art. 2. Take a Cartesian
system (¢§) with the position of the first particle O as origin. Then
we can put®:

(4.1) d¢ = o', dg* = o' = dr,
where 7 is the radius of the oriented sphere with center (&%,
which is the energy level emitted from the particle P(¢). In case
do®—dr*<0, the sphere (P, r) encloses the particle O, which emits
gravitational energy due to #, and electric energy due to —é
spherically, the energy level being the sphere (0, S) with center
O and radius S. Put

42) E= % — radial energy emitted from P

= radial velocity of the energy level (P, r),

4.8) = %‘% = radial energy emitted from O

= radial velocity of the energy level (O, S),
Let ¢’ = electromagnetic vector potential for O,
(4.4) €4’ = m, (gravitational static potential for P),

(4.5) &¢' = m, (gravitational static potential for 0),
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(4.6)
4.7
(4.8)
(4.9)
(4.10)

(4.11)

Then
4.12)

(4.13)

(4.14)

Where m=mo—d—s~ and m=mo dS
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p* = momentum components for P,
P* = momentum components for O,
Ep* = total energy for P in case of no gravitation,
Ep® = total energy for O in case of no gravitation,
Ep® = total energy of P for the case of no electric
field
= F times the corresponding momentum,
Ep* = total energy for O in case of no electric field
= E times the corresponding momentum.

4 ¢ — 2 2d0' i
(Ep*+e¢'+ L'+ 89°) = (mE' +mkE dS) ,

(Ep*+ ot + EF*+ éq"s*)=(mE2 do + mEL9e )

as

5 5| LBy b de‘ zdo'
(Ep°+edp®+ LT+ ep°) = (mE dar +mk dS) ,
dr

are longitudinal masses. (4.12),

dar

(4.18), (4.14) and (0.2) with o"=o(z)da* give

(4.15)

Y Ep'+ed' + ED' +ed’) =1y (Ep° + e+ ED°+ 29" .

For v.¢'—7’=9, vp'—ypp®*=P, etec., (4.15) becomes

(4.16)

Ep+e¥ + Ep+8¥=0.

Applying the operator

(4.17)

3

) 9
2’)’5;3‘ = 'Yl—wl— = %a_fl

to (4.16), we have

(4.18)

where
4.19)

(4.20)
(4.21)

(4.22)

2')'

———(Ep +ep'+ EP' + ég’)

—'Y4'Y¢(96‘+6X‘+ 2%+ e X)) +vv(af+ et + T+ ea’)
—2—3;(15'720“ + e¢® + Ep® + &¢°) =0,

X = a(E%g)‘) + a(Ef") , ete.,
()] (]

o J
o = B ABD) |
4 (]
x=30 4 3 ete,
k L
a =—§i+}— - _8¢;_” ete.
[0 (]

Introducing the continuity condition

(4.23)

%(Ep’+e¢’+Ef)’+é$‘)-2—waT(Ep5+e¢>"+€5"+e$”)=0

and applying (4.17) once more, we obtain the generalization of
the Maxwell’s equations :
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(4.24) —3,—(9@"+ e X'+ T +eX) =+ ot + B4 5,
(4.25) L@t eat+ @+ 8+ (o6t + 6 X+ T+ 2XY)
— L @+ e + T +2X) =0,
(4.26) :’a-f(a"+ ea +a*+ o) —;a,c—(aﬁﬁL ecd +a + o)
— L e X+ T e XY = T,
(4.27) _}_(af +ea + ' + aa') =0,

where e*=gravitational density due to P, g‘=gravitational density
due to O, e‘=components of *‘ gravitational current’ due to P, e’
=those due to O. Perhaps ¢, &, ¢* and & will be very small
compared with o% &, o* and &* respectively.

5. Generalized Dirac Equations. Put

(5.1) «[r=2%—£,,—(EP+ ¢¥+ EP+2¥)

= — {2 +eX' + X'+ X)) + vivi(a’ + et + @' + Ea’)
and applying (4.17) once more, we obtain
2 f— a—
(5.2) 48 _(EP+ew+EP+e0)=2v,"Y =, ¥ —
[ONO) [0) [0)

which leads us to the generalized Dirac equation :

(5.3) [ry,( 2%7:»3,—+e¢‘+ h E’~a—l+é$l>+'}’n(moE+moE)]\P‘=0

’

271'& w
by a process similar to the usual one.
Applying (4.17) once more, we obtain
3® TN 3? ) 3
which leads us to a generalized Schrodinger equation.
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