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122. A Necessary Unitary Field Theory as a
Non.Holonomic Parabolic Lie Geometry

Realized in the Three.Dimensional
Cartesian Space

By Tsurusaburo TAKASU
(Comm. by Z. SUETUNA, M.JoAo, Dec. 14, 1953)

The geometry based upon is the author’s non-holonomie para-
bolic Lie geometry *, which is situated among other branches
of geometry as follows: (Euclidean geometry): (Non-Euclidean
geometry) (parabolic Lie geometry): (Lie geometry) (non-
holonomic parabolic Lie geometry) (non-holonomic Lie geometry).
Instead o the quadratic differential form:

(0.1) d8 gdxdx gdxdx + gdxdx
we ake he linear vector form

(0.2) =7,o, (t=dx’, l=1,2,3,4),
such that

(0.3) dsds
where in Einstein’s notation ) we have

(0.4) g ,
-,) ---+(0.5) g=,(o, + ,.,

and

+=0, etc., 7+=0, etc.,
the %, %, %, % being the Pauli’s 4-4-matrices. Starting from (0.2)
and pursuing necessities stepwise, the author will develop a
unitary field theory.

1. Realization of the Non-Holonomic Parabolic Lie Geometry in
the Cartesian Space. The said geometry will be realized in the
three-dimensional Cartesian space provided with the Cartesian
coordinates (), (i=1, 2, 3), such that

(1.1) d$ ,
(1.2) d ’= dr,

the r being the radius of the oriented sphere with center P($).

We adopt a double use for ds:
a vector (0.2) with components the common tangential sogmont. ds=idS of the oriented sphere

(P, r) with its consecutive one.
The quantity ds=idS is purely imaginary, when

*) The ciphers in the square brackets refer to the References attached to the
end of this paper.
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dd dr dz dr 0
If we put

(1.3) -- -the condition (0.3) may be rewritten"
(1.4) u*u* 0, (A 1, 2, ..., 5).
2. Problem (Two Particles Problem). We consider two particles

0 and P respectively charged with rest-masses o, o and with
consang electricity , e, which make motions relative to each
other. Then both O and P emit gravitational energy and electric
energy spherically. The law of motion is required. In Art. 4, this
problem will be solved.

8. GenerabReativistically Generalized Maxwell’s Equations.
Introducing the notations" =electromagnetic vector potential,
(i=1, 2, 8) -=electrostatic potential z=current components
a=electric density, =%, J= -a+w, X=electric intensity,
a=magnetic intensity, the author has proved ) that the eight
components of the single equation

4

ara fha anaral-ralafivisfieally Canaralized Maxwll’s uaions"
X

a
0X a

(8.2) a’ 8a’ ( xa x* o
.4. Solution of the Problem Stated in Art. 2. Take a Caresian

system (*) wih ghe position of ghe fir particle O as origin. Then
wo cn pu *)"

(4.1) d* *, d * dr,
wher r is the radius of ghe orienged sphere wigh cenger
which is he energy level emitted from the particle P(). In case
dv*-dr*O, Che sphere (P, r) encloses the particle O, which emits
gravitational nergy du to o and electric energy due
spherically, ghe energy level being he sphere (0, S) with cenger
O and radius S. Pu

dr(4.2) E radial energy emitted from

radial velocity of the energy level (P, r),

(4.8) dS radial energy emitted from 0dt
radial wlocigy of ghe energy level (O, S),

Le *= electromagnetic vector potential for O,
(4.4) e= mo (gravitational sea,it poengial for P),
(4.5) * o (graviagional satic potengial for O),
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(4.6)
(4.7)
(4.8)
(4.9)
(4.10)

(4.11)

Then

(4.12)

momentum components for P,
momentum components for O,

Ep= total energy for P in case of no gravitation,
Ep= total energy for 0 in case of no gravitation,
Ep= total energy of P for the case of no electric

field
E times he corresponding momentum,

:= total energy for 0 in case of no electric field
; times the corresponding momentum.

(Ep’ + e@ +’+,) (m d + --m-d3-)ud \,,
(E + e4, + +)= m + 2K)u,(4.13)

(4.14) (Ep da damE

dr dSwhere m=mo and=o are longitudinal masses.

(4.13), (4.14) and (0.2) with =[(z)dx give
(4.5) (E +e + +)=(E +e + +)
For -%=, p-p=P, etc., (4.15) becomes
(4.16) Ep + e + + O.

Applying the operator

(4.17) 2
to (4.16), we have

(.s)

(4.12),

where

(4.19) 26’= O(Ep’) + O(Ep’) etc.

(4.20) a’ O(EP) O(Ed) etc.,

(4.21) X’ 6’ +. -’ etc.

(4.22) a’--8- 8-, etc.

Introducing the continuity condition

(Ep + edp + ..+ Fp) 2-(Ep + edp + +e)=0(4.28) -and applying (4.17) once more, we obtain the generalization of
the Maxwell’s equations"
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(4.24)

(4.25)

($e’ + eX’+’+eX’) ’+’+’+’,

--(+e+ +)=0,

(4.27) ---(a’ + ea’ + a’ + ’) 0,

where e=gravitational density duo to P, =gravitational density
due to O, e’--components of "gravitational current" due to P,
=those duo to O. Perhaps e’, E’, e and will be very small
compared with a’, ’, a and respectively.

5. Generalized Dirac Equations. Put

(5.1) =2%(EP+e++)
,,(’+eX’ +’+X’) +(a’+e’+ a’ +’),

and applying (4.17) once more, we obtain

,,=.(EP+(5.2) 4 e+EP+ )2- ,_0-=0,
which leads us to the generalized Dirac equation"

(5.3)

by a process similar to the usual one.
Applying (4.17) once more, we obtain

2(5.4)

which leads us to a generalized SchrSdinger equation.
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