129. On the Propagation of Regularity of Solutions of Partial Differential Equations with Constant Coefficients

By Taira Shirota
Department of Mathematics, Osaka University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1962)

1. Let $P\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}\right)$ be a partial differential operator of order m with constant coefficients. Let ξ be a unit vector of the dual space Ξ^{n} of $R^{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\}$ and for any vector $\xi, S(\xi, h)$ the spherical neighbourhood of ξ with radius h. Then we define the ξ-regularity of P as follows:

Definition. $\quad P\left(\frac{\partial}{\partial x}\right)$ is ξ-regular if every distribution solution u of the equation $P u=0$ defined in $S(0, h)$ for some h, is in $C^{0}(S(0, l))$ for some l, whenever u belongs to $C^{p}(S(0, h) \frown\{x \mid(x, \xi) \leqq 0\})$, where $l(<h)$ and p are independent of u.

In the present note we give some characterization of the ξ regularity using A. Seidenberg's Theorem [1] as follows:

Theorem. The necessary and sufficient condition for P to be ξ-regular is the following: there are a neighbourhood $S(\xi, \delta)$, positive numbers A, B, L, α such that if for any real number s, for any real vector $\eta \in \Xi^{n}$ and for any $\xi^{\prime} \in S(\xi, \delta)$

$$
A<s<B(|\eta|+1)^{\alpha} \quad \text { and } \quad|\eta|>L
$$

then $s \xi^{\prime}+$ in does not satisfy the characteristic equation of P, i.e.,

$$
P\left(s \xi^{\prime}+i \eta\right) \neq 0 .
$$

By Theorem and using Hörmander's considerations [2] we see the following

Corollary 1. If P is homogeneous and Q is weaker than P and of order $<m$, then $P+Q$ is ξ-regular, whenever P is so.

Corollary 2. Let $n \geqq 3$. Then the following conditions are equivalent:
(1) $P+Q$ is ξ-regular for any Q such that the order of $P>$ the order of Q,
(2) $P(\xi) \neq 0$ and if a real $\eta(\neq 0)$ satisfies the equation

$$
P(\eta)=0,
$$

then

$$
(\xi,(\operatorname{grad} P))(\eta) \neq 0, \text { and }
$$

(3) P is of principal type and is hypo- - -regular.

Corollary 3. If P is not hypo-elliptic, then there exists an ξ
such that P is not hypo-s-regular.
2. To prove theorem we use the following Lemmas.

Lemma 1. Let P be a polynomial of Ξ^{n} having the property: there is a continuous curve $(s(r), r)$ defined by $\{(s, r) \mid s(r)=k \cdot \log r$ and $r>L$ for some L and for some $k>0\}$ such that any point $(s(r)$, r) of this curve satisfies the condition: for any $\eta \in \Xi^{n}$ with $|\eta|=r$, for any $\xi^{\prime} \in S(\xi, \delta)$

$$
P\left(S(r) \xi^{\prime}+i \eta\right) \neq 0 .
$$

Then there exists positive numbers A, B, L and α such that for any s satisfying the condition:

$$
A<S<B(1+|\eta|)^{\alpha} \quad \text { and } \quad|\eta|>L
$$

and for any $\xi^{\prime} \in S(\xi, \delta)$,

$$
P\left(s \xi^{\prime}+\dot{I} \eta\right) \neq 0
$$

This lemma is proved applying twice Seidenberg's Theorem. (See Hörmander [2].)

Lemma 2. If it satisfies the conclusion of Lemma 1, then P is ξ-regular.

For applying the consideration used in my paper [4], we can construct a fundamental solution K of $P\left(\frac{\partial}{\partial x}\right)$ such that for some δ^{\prime}

$$
K(x) \in C^{\infty}\left(\Xi^{n}-V\left(0, \delta^{\prime}\right)\right),
$$

where $V\left(x, \delta^{\prime}\right)=\left\{y \mid\left(y-x, \xi^{\prime}\right) \geqq 0\right.$ for any $\left.\xi^{\prime} \in S\left(\xi, \delta^{\prime}\right)\right\}$.
Therefore by the usual method we can conclude that P is ξ-regular.
Lemma 3. If the assumption of Lemma 1 for sufficiently small δ does not satisfied, then P is not ξ-regular.

Proof. We assume that P is ξ-regular. Then by the closed graph theorem of Banach space and by a geometrical consideration we see that for any $\delta<\delta^{\prime}$, for any positive integer γ and for some p there exists positive number K such that

$$
\|u\|_{o_{0}^{-\tau}(\Lambda((h-l) \xi, \delta))}+\|u\|_{O^{p}(\Lambda(-l \xi, \delta))} \geqq K|u(0)|
$$

for any solution u of $P u=0$ with $u \in C_{0}^{\infty}(\Lambda((h-l) \xi, \delta)$, where $\Lambda(y, \delta)$ $=\left\{x \mid\left(x-y, \xi^{\prime}\right) \leqq 0\right.$ and $x>-B$ for any $\xi^{\prime} \in S(\xi, \delta)$ and a sufficiently large $B\}$. Now we suppose that the assumption of Lemma 1 is not satisfied. Then for any K there exists a sequence $\left\{s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right\}$ of solution $P\left(s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right)=0$ such that

$$
s_{\alpha}=K \log \left|\eta_{\alpha}\right|,\left|\eta_{\alpha}\right|>L_{(K)} \text { and } \xi_{\alpha} \in S(\xi, \delta),
$$

where δ is sufficiently small. Now by $u(x)$ we denote the function:

$$
\begin{gathered}
U(x)=\sum_{\alpha} U_{\alpha}(x), \\
U_{\alpha}(x)=e^{\left(s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right) x+l s_{\alpha}}\left|\eta_{\alpha}\right|^{-p-1} .
\end{gathered}
$$

Then we see that
$\left(U_{1}\right) \quad \sum_{\alpha} u_{\alpha}(x)$ converges absolutely in $C_{0}^{-\gamma}(\Lambda(h-l) \xi, \delta)$,
$\left(U_{2}\right) \quad \sum_{\alpha} u_{\alpha}(x)$ converges absolutely in $C^{p}(\Lambda(-l \xi, \delta))$ and
$\left(U_{3}\right) \quad \sum_{\alpha} u_{\alpha}(0)$ does not converge,
which contradicts to the above estimate.
Therefore we only have to show that $\left(u_{1}\right),\left(u_{2}\right)$ and $\left(u_{3}\right)$ are valid. Now for $\varphi(x) \in C_{0}^{\infty}(\Lambda((h-l) \xi, \delta)$,

$$
\begin{aligned}
& \left|\int u_{\alpha}(x) \varphi(x) d x\right| \\
\leqq & \left.\left.\left|\int Q^{r}\left(\frac{\partial}{\partial x}\right) e^{\left(s_{\alpha} \xi_{\alpha}+i \eta_{\alpha} x+l s_{\alpha}\right.}\left(Q^{r}\left(s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right)\right)^{-1}\right| \eta_{\alpha}\right|^{-p-1} \varphi(x) d x \right\rvert\, \\
\leqq & \left.\left.\left|\int e^{\left(s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right) x+l s_{\alpha}}\right| Q^{r}\left(s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right)\right|^{-1}\left|\eta_{\alpha}\right|^{-p-1} Q^{r}\left(-\frac{\partial}{\partial x}\right) \varphi(x) d x \right\rvert\, \\
\leqq & L \| \varphi(x)| |_{C^{r}} \cdot e^{s_{\alpha}\left(\xi_{\alpha} \cdot x\right)+s_{\alpha} l}\left|\eta_{\alpha}\right|^{-r-p-1}
\end{aligned}
$$

for some L. Therefore

$$
\left.\left\|u_{\alpha}(x)\right\|_{0}^{-r}(A(c h-l) \xi, \delta)\right\rangle \gg L e^{s_{\alpha}\left((h-l)(1+\delta)+l-\frac{p+\gamma+1}{K}\right.}
$$

Furthermore we see that

$$
\left\|u_{\alpha}(x)\right\|_{\left.\sigma^{p_{(}}(\Lambda(-l) \xi, \delta)\right)} \leqq L e^{s_{\alpha}\left((-l)(1-\delta)+l-\frac{1}{K}\right)}
$$

and

$$
\left|u_{\alpha}(0)\right| \geqq e^{s_{\alpha}\left(l-\frac{p+1}{K}\right)} .
$$

Hence we must choose $\left\{s_{\alpha} \xi_{\alpha}+i \eta_{\alpha}\right\}$ such that

$$
\begin{aligned}
\frac{p+\gamma+1}{K}+l \delta-h(1+\delta) & \geqq 2 \frac{\log \alpha}{s_{\alpha}} \\
\frac{1}{K}-l \delta & \geqq 2 \frac{\log \alpha}{s_{\alpha}} \\
\frac{p+1}{K}-l & \leqq \frac{\log \alpha}{s_{\alpha}}
\end{aligned}
$$

Therefore we take sufficiently large K such that $\frac{p+1}{K}-l \leqq 0$ and then sufficiently small δ such that $\frac{1}{K}-l \delta \geqq \varepsilon$ for some $\varepsilon>0$ and finally sufficiently large γ. Then if we take sufficiently large s_{α} such that $\frac{1}{2} \varepsilon s_{\alpha}>\log \alpha$, we see that all our requirements are satisfied.

By Lemmas 1 and 3 we see that if P is ξ-regular, it satisfies the condition of Theorem.
3. Remark. From above it is easily seen that P is ξ-regular if and only if for some h and $l(h>l>0)$ there exists a positive integer $p(h, l)$ such that for any integer q, any solution u of $P u=0$ is in $C^{q}(S(0, l))$, whenever $u \in C^{0}(S(0, h))$ and $u \in C^{\alpha q+p(h, l)}$ $(S(0, l) \frown\{x \mid(x, \xi) \leqq 0\})$ for some $\alpha \leqq 1$. Now we shall define the general ξ-regularity: we say that P is hypo- ξ-regular if every distribution solution u of the equation $P u=0$ in $C^{0}(S(0, h))$ for some h, is in
$C^{\infty}(S(0, l))$ for some l, whenever u belongs to $C^{\infty}(S(0, h) \frown\{x \mid(x, \xi) \leqq 0\})$, where l may depend upon u. Here we remark that from them hypo-ξ-regularity it does not always imply the ξ-regularity.

For example, we consider the operator $P\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\frac{\partial^{2}}{\partial t^{2}}+i \frac{\partial}{\partial x}$. We easily see that P is ξ_{1}-regular in 2 -dim. space $\{(t, x)\}$, but not in 3 -dim. space $\{(t, x, y)\}$. Now we show that P is hypo- ξ-regular in 3 -dim. space. To prove it we may suppose by a coordinate transformation that $P u=f$, where $P\left(x, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\frac{\partial^{2}}{\partial t^{2}}+i \frac{\partial}{\partial x}+\varepsilon x \frac{\partial}{\partial t}$, $f \in C_{t, x, y}^{\infty}(S(0, h)), u \in C_{t, x, y}^{2}(S(0, h))$ and $u=0$ when $t \leqq \varepsilon x^{2}+\varepsilon y^{2}$. Then by F. John's consideration [3], for some A

$$
\left|\left\|u\left(t, x, i \xi_{3}\right) \mid\right\|_{\theta} \leq A\left(\left\|(P u)\left(t, x, i \xi_{3}\right)\right\|_{n}\right)^{\alpha}\left(\left\|\left|u\left(t, x, i \xi_{3}\right)\right|\right\|_{n}\right)^{1-\alpha}\right.
$$

where

$$
\begin{aligned}
&\|v(t, x)\|\left\|_{\theta}=\right\| \frac{\partial}{\partial t} v(t, x)\left\|_{\theta}+\right\| \frac{\partial}{\partial x} v(t, x)\left\|_{\theta}+\right\| v(t, x) \|_{\theta} \\
&\|v(t, x)\|_{\theta}=\|v(t, x)\|_{L^{2}\left([0, \theta] \times R_{x}\right)} \\
& \theta<h^{\prime}<h \quad \text { and } \quad \alpha=\frac{h^{\prime}-\theta}{h^{\prime}} .
\end{aligned}
$$

Therefore by our assumption, it implies that $\left\|u\left(t, x, i \xi_{3}\right)\right\|_{\theta} \leqq K(1$ $\left.+\left|\xi_{3}\right|\right)^{-k}$ for any k and some $K=K(k)$, hence $u \in C_{y}^{\infty}(S(0, l))$ for some l, from which we see that $u \in C_{t, x, y}^{\infty}(S(0, l))$, since P is ξ-regular in 2dim. space $\{(t, x)\}$.

Furthermore we remark that this example satisfies the necessary and sufficient condition to be ξ-regular, mentioned in this section, but with $\alpha>1$.

References

[1] A. Seidenberg: A New decision method for elementary algebra, Ann. of Math., 70 (1954).
[2] L. Hörmander: On the theory of general partial differential operators, Act Nath., 94 (1955).
[3] J. John: Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Communications on pure and applied Math., 13 (1960).
[4] T. Shirota: On solutions of a partial differential equation with a parameter, Proc. Japan Acad., 32 (1956).

