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1o Let p( 3 3 ,’",-3) be a partial differential operatorx 3x
of order m with constant coefficients. Let $ be a unit vector of the
dual space of R--{(x, x,..., x)} and for any vector $, S($, h) the
spherical neighbourhood of with radius h. Then we define the
S-regularity of P as follows"

Definition. P(..)is -regular if every distribution solution u

of the equation Pu--O defined in S(0, h) for some h, is in C(S(O, l))
for some l, whenever u belongs to C(S(0, h){xl(x, $)0}), where
l(< h) and p are independent of u.

In the present note we give some characterization of the
regularity using A. Seidenberg’s Theorem [1] as follows"

Theorem. The necessary and sufficient condition for P to be
S-regular is the following: there are a neighbourhood S($, 3), positive
numbers A, B, L, a such that if for any real number s, for any
real vector e and for any ’e S($, 3)

A<s<B([I+I) and
then s’-ki does not satisfy the characteristic equation of P, i.e.,

P(s’-ki) - O.
By Theorem and using HSrmander’s considerations [2J we see the
following

Corollary 1. If P is homogeneous and Q is weaker than P and
of order <m, then P-kQ is .-regular, whenever P is so.

Corollary 2. Let n3. Then the following conditions are
equivalent"

1 ) P-kQ is $-.regular for any Q such that the order of P> the
order of Q,

(2) P() -0 and if a real (-O) satisfies the equation

P(v)-o,
then

(, (grad P)) (V)#-O, and

(3) P is of principal type and is hypo-$-regular.
Corollary 3. If P is no hypo-ellip$ic, then $here eiss an



588 T. SHIROTA [Vol. 38,

such that P is not hypo-$-regular.
2o To prove theorem we use the following Lemmas.
Lemma 1. Let P be a polynomial of having the property"

there is a continuous curve (s(r), r) defined by {(s, r) s(r)-k.log
and rL for some L and for some k0} such that any point (s(r),
r) of this curve satisfies the condition" for any Vn with
for any $’eS($, )

+ o.
Then there exists positive numbers A, B, L and a such that for any
s satisfying the condition"

A<S<B(I+I]]) and
and for any ’ S(, ),

This lemma is proved applying twiee Seidenberg’s Theorem. (See
HSrmander 2_ .)

Lemma 2. If it satisfies the conclusion of Lemma 1, then P
is $-regular.

For applying the consideration used in my paper 4, we can

eonstruet a fundamental solution K of P - such that for some

where V(x, ’)-{ (--w, ’) -->--- 0 for any ’ S(, ’)}.
Therefore by the usual method we can eonelude that P is -regular.

Lemma 3. If the assumption of Lemma 1 for suciently small
does not satisfied, then P is not $-regular.

Proof. We assume that P is S-regular. Then by the closed
graph theorem of Banach space and by a geometrical consideration
we see that for any ’, for any positive integer 7 and for some
p there exists positive number K such that

for any solution u of Pu-O with ueC(A((h--1)$,5), where A(y,)
"-{x[(x--y, ’)

__
0 and x>--B for any ’S(, 3) and a sufficiently

large B}. Now we suppose that the assumption of Lemma 1 is not
satisfied. Then for any K there exists a sequence {s.$.+iv.} of
solution P(s.$.+iv.)--O such that

s-Klog I]], I]>L() and S(, ),
where 3 is sufficiently small. Now by u(x) we denote the function"

hen we see ha
(U) u() converges absolutely in C-r(A(h--t), ),
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(U) u(x) converges absolutely in C(A(--I$, ))and

(U) u(0) does not converge,

which contradicts to the above estimate.
Therefore we only have to show that (u), (u) and (u) are valid.

Now for (x)eC(A((h--1), ),

/u(x)(x)dx

fe".,Q(s..+i),-.--@(-)(x)dx
for some L. Therefore

Furthermore we see that

and

Hence we must choose {s.$+iw} such that
p+y+l +/(--h(l+() >2 log a
K s--l :> 2 log a

p+l_l log____a.
K s

Therefore we take sufficiently large K such that p+l--lO and
K

1 l> for some >0 andthen sufficiently small such that ----finally sufficiently large ’. Then if we take sufficiently large s such
that 1/2s,>log a, we see that all our requirements are satisfied.

By Lemmas 1 and 3 we see that if P is S-regular, it satisfies the
condition of Theorem.

o REMARK. From above it is easily seen that P is S-regular
if and only if for some h and (h>lO) there exists a positive
integer p(h,l) such that for any integer q, any solution u of
Pu--O is in Cq(S(O,l)), whenever ueC(S(O,h)) and ueC
(S(O, l)[xl(x, )

_
0}) for some a 1. Now we shall define the general

S-regularity" we say that P is hypo-$-regular if every distribution
solution u of the equation Pu-O in C(S(O,h)) for some h, is in
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C(S(O, 1)) for some l, whenever u belongs to C(S(O, h){xl(x, )=<0}),
where may depend upon u. Here we remark that from them hypo-
S-regularity it does not always imply the S-regularity.

Fr example’ we cnsider the peratr P( 33t’3x’ OyO)---t+02 i3--3x"
We easily see that P is $-regular in 2-dim. space {(t,x)}, but not
in 3-dim. space {(t, x, y)}. Now we show that P is hypo-$-regular in
3-dim. space. To prove it we may suppose by a coordinate trans-

formation that Pu=f, where P x,
3x’ 3x 3t

feC,,(S(O, h)), ueC,,(S(O, h)) and u-0 when t x+y. Then by
F. John’s consideration [3], for some A

u(t, x, (Pu)(t,
where

#< h’ < h and
h’

Therefore by our assumption, it implies that u(t,x,
+]])- for any k and some K:K(k), hence uC(S(O,I)) for some
l, from which we see that uC,(S(O, l)), since P is -egula in 2-
dim. space {(t, x)].

Furthermore we remark that this example satisfies the neces-
sary and sucient condition to be -regular, mentioned in this section,
but with a> 1.
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