48. Smooth Structures on $S^{p} \times S^{q}$

By Katsuo KAWAKUBO

Department of Mathematics, Osaka University, Osaka

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1969)

This paper shows the classification of smooth structures on $S^p \times S^q$ promised in [6].

In [10], Novikov classified smooth structures modulo one point of the manifolds which are tangentially homotopy equivalent to a product $S^p \times S^q$ of spheres. On the other hand, the author determined in his paper [6] the inertia group $I(S^p \times \tilde{S}^q)$ of $S^p \times \tilde{S}^q$. In the present paper, we shall show that combining these results derives complete classification of smooth structures on $S^p \times S^q$ for $p+q \ge 6$, $1 \le p \le q$.

In the following we shall use the notations in [6].

Detailed proof will appear elsewhere.

1. Preliminaries. Let a smooth structure M_{α} on $S^{p} \times S^{q}$ be given i.e., assume that there is given a piecewise differentiable homeomorphism $f: S^{p} \times S^{q} \to M_{\alpha}$. Let x_{0} (resp. y_{0}) denote a point of S^{p} (resp. S^{q}). Since $f(x_{0} \times S^{q})$ (resp. $f(S^{p} \times y_{0})$) has a vector bundle neighbourhood in M_{α} , there exists a piecewise differentiable homeomorphism $h: M_{\alpha} \to M_{\alpha}$ such that $h(f(x_{0} \times S^{q}))$ (resp. $h(f(S^{p} \times y_{0}))$) is a smooth submanifold of M_{α} (see R. Lashof and M. Rothenberg [9]). Therefore it follows that there exists a homotopy sphere \tilde{S}^{q} (resp. \tilde{S}^{p}) which is embedded smoothly in M_{α} with a trivial normal bundle and which represents a generator of $H_{q}(M_{\alpha}) \cong H_{q}(S^{p} \times S^{q}) \cong Z$ (resp. $H_{p}(M_{\alpha}) \cong H_{p}(S^{p} \times S^{q})$ $\cong Z$) if $p \neq q$. We may assume that \tilde{S}^{p} and \tilde{S}^{q} intersect transversally at one point. Applying the similar argument as in [6], we can now show that

 M_{α} -Int $D^{p+q} = \tilde{S}^p \times D^q \otimes D^p \times \tilde{S}^q = \tilde{S}^p \times \tilde{S}^q$ -Int D^{p+q} where \otimes denotes the plumbing of two manifolds. Hence M_{α} can be written as $\tilde{S}^p \times \tilde{S}^q \ \# \tilde{S}^{p+q}$ for some exotic sphere \tilde{S}^{p+q} , here $\ \#$ denotes the connected sum. It is easily seen that this still holds in the case p=q. Obviously $\tilde{S}^p \times \tilde{S}^q \ \# \tilde{S}^{p+q}$ is tangentially homotopy equivalent to $S^p \times S^q$. Therefore, by making use of the classification theorem of Novikov [10], we see that $\tilde{S}^p \times \tilde{S}^q$ is diffeomorphic to $S^p \times \tilde{S}^q$ modulo one point for $p \le q$. Thus the problem of classifying smooth structures on $S^p \times S^q$ ($p \le q$) is reduced to the study of smooth structures of the form $S^p \times \tilde{S}^q \ \# \tilde{S}^{p+q}$.

2. Lemmas. The following lemma is proved in Theorem C of [6].

K. KAWAKUBO

Lemma 1. Let $K_1: \pi_p(SO) \times \Theta_q \rightarrow \Theta_{p+q}$ denote the pairing defined by Milnor-Munkres-Novikov. Then it holds that

$$I(S^p \times \tilde{S}^q) = K_1(\pi_p(SO), \tilde{S}^q)$$

for $p+q \ge 5$, $p+1 \ne q$.

The following lemma is a generalization of Corollary 3 of Katase [5].

Lemma 2. $S^p \times \tilde{S}_1^q$ is diffeomorphic to $S^p \times \tilde{S}_2^q$ if $S^p \times \tilde{S}_1^q \# \tilde{S}^{p+q}$ is diffeomorphic to $S^p \times \tilde{S}_2^q$ for some homotopy sphere \tilde{S}^{p+q} for $p+q \ge 5$ and $q \ge p \ge 1$.

Define a subgroup G'_q of $G_q = \pi_{q+N}(S^N)$ (N: Large) as follows. A map $f: S^{q+N} \to S^N$ represents an element of G'_q if and only if f represents the Pontrjagin-Thom map of some framed imbedding $\tilde{S}^q \times D^N \subset S^{q+N}$.

Denote by $\mathcal{S}(M)$ the set of smooth structures on M modulo orientation preserving diffeomorphisms. Define that $M_{\alpha}, M_{\beta} \in \mathcal{S}(M)$ are equivalent if and only if there exists an orientation preserving diffeomorphism $f: M_{\alpha} \to M_{\beta}$ modulo one point. Denote by $\mathcal{S}'(M)$ the quotient set of $\mathcal{S}(M)$. The following is a revised form of the classification theorem of Novikov [10].

Lemma 3. $S'(S^p \times S^q)$ is in one-to-one correspondence with G'_q / \sim for $p+q \ge 6$ and $q \ge p \ge 2$ where \sim is the relation of Novikov.

3. Smooth structures on $S^p \times S^q$.

For $\alpha, \beta \in \Theta_q$, define $\alpha \sim \beta$ if and only if $\alpha = \beta$ or $\alpha = -\beta$. Denote by Θ_q / \sim the quotient set of Θ_q .

Theorem. For $p+q \ge 6$, $2 \le p \le q$, we have

 $\mathcal{S}(S^{p} \times S^{q}) = \{S^{p} \times \tilde{S}_{i}^{q} \ \# \tilde{S}_{ij}^{p+q} | \tilde{S}_{i}^{q} \in G'_{q} / \sim, \tilde{S}_{ij}^{p+q} \in \Theta_{p+q} / K_{1}(\pi_{p}(SO), \tilde{S}_{i}^{q})\}.$ For p = 1 and $q \ge 5$, we have

 $\mathcal{S}(S^1 \times S^q) = \{S^1 \times \tilde{S}_i^q \ \# \ \tilde{S}_{ij}^{1+q} \ | \ \tilde{S}_i^q \in \Theta_q / \thicksim, \ \tilde{S}_{ij}^{1+q} \in \Theta_{1+q} / K_1(\pi_1(SO), \ \tilde{S}_i^q)\}.$

Combining lemmas in §2, we easily obtain this Theorem.

4. Some computations.

In this section we shall show some examples.

Proposition 1. If (p,q) is any of the following: (2,7), (2,8), (6,8), (2,14), (3,13), (3,15), (6,10), then $S(S^p \times S^q) = (G'_q/\sim) \times \Theta_{p+q}$.

Proof. Bredon showed in [1] that if (p, q) is any of the set above, then $K_1(\pi_p(SO), \Theta_q) = S^{p+q}$ (the natural sphere). Therefore this is an immediate consequence of Theorem.

Proposition 2.

 $S(S^{3} \times S^{10}) = \{S^{3} \times S^{10}, S^{3} \times S^{10} \ \# \ \tilde{S}^{13}, S^{3} \times S^{10} \ \# \ 2\tilde{S}^{13}, S^{3} \times \tilde{S}^{10}\},\$

i.e., $S^3 \times S^{10}$ admits exactly 4 smooth structures, where \tilde{S}^{10} denotes a generator of the three component Z_3 of $\Theta_{10} \cong Z_2 \oplus Z_3$, and \tilde{S}^{13} denotes a generator of $\Theta_{13} \cong Z_3$.

This follows from the following computations.

Kervaire and Milnor showed in [8] that every element of the group $G_{10} \cong Z_2 \oplus Z_3$ is represented by the Pontrjagin-Thom map of some framed imbedding $\tilde{S}^{10} \times D^N \subset S^{10+N}$. Since non-zero elements of the 3-component Z_3 of $G_{10} \cong Z_2 \oplus Z_3$ do not come from the unstable group $\pi_{14}(S^4)$ by the suspension homomorphism

$$E: \pi_{14}(S^4) \to \pi_{10+N}(S^N)$$
 (N; large),

 $S^3 \times \tilde{S}^{10}$ is not diffeomorphic to $S^3 \times S^{10}$ modulo one point for a generator \tilde{S}^{10} of $Z_3 \subset Z_2 \oplus Z_3 \cong \Theta_{10} \cong G_{10} = G'_{10}$. In [6], it is shown that $I(S^3 \times \tilde{S}^{10}) = K_1(\pi_3(SO), \tilde{S}^{10}) = \Theta_{13}$.

On the other hand, the 2-component Z_2 of $G_{10} \cong Z_2 \oplus Z_3$ comes from the unstable group $\pi_{12}(S^2)$ (see H. Toda [11]). Therefore $S^3 \times \tilde{S}^{10}$ is diffeomorphic to $S^3 \times S^{10}$ modulo one point for the generator \tilde{S}^{10} of the 2component Z_2 . By Lemma 2, we can deduce that $S^3 \times \tilde{S}^{10}$ is actually diffeomorphic to $S^3 \times S^{10}$. Therefore Theorem gives the requiring result.

Remark 1. Let \tilde{S}^{10} denote a generator of the 3-component $Z_3 \subset G'_{10}$ = $Z_2 \oplus Z_3$. Since there exist orientation reversing diffeomorphisms S^3 to S^3 and \tilde{S}^{10} to $2\tilde{S}^{10}$ respectively, we have an orientation preserving diffeomorphism $f: S^3 \times \tilde{S}^{10} \rightarrow S^3 \times 2\tilde{S}^{10}$.

Proposition 3. The order of $S(S^3 \times S^{14})$ is 24.

Proof. Since $G'_{14} = Z_2 \subset G_{14} = Z_2 \oplus Z_2$ (see Kervaire and Milnor [8]), $S(S^3 \times S^{14})$ is the quotient set of $Z_2 \times \Theta_{14}$. In [6], we showed that $I(S^3 \times \tilde{S}^{14}) = K_1(\pi_3(SO), \tilde{S}^{14}) = Z_2 \neq 0$ modulo $\Theta_{17}(\partial \pi)$ for the generator \tilde{S}^{14} of $\Theta_{14} \cong Z_2$. Consequently we have

 $S(S^{3} \times S^{14}) = \{ \overline{S^{3}} \times S^{14} \ \# \ \tilde{S}_{i}^{17} | \ \tilde{S}_{i}^{17} \in \Theta_{17} \} \\ \cup \{ S^{3} \times \tilde{S}^{14} \ \# \ \tilde{S}_{j}^{17} | \ \tilde{S}^{14} \neq S^{14}, \ \tilde{S}_{j}^{17} \in \Theta_{17} / K_{1}(\pi_{3}(SO), \ \tilde{S}^{14}) \}$

which proves the proposition.

Proposition 4. If $p \leq q \leq p+3$, then $\mathcal{S}(S^p \times S^q)$ is in one-to-one correspondence with Θ_{p+q} by $S^p \times S^q \# \tilde{S}^{p+q} \mapsto \tilde{S}^{p+q}$.

Proof. Hsiang, Levine and Szczarba [4] shows that \tilde{S}^q can be embedded in the (q+p+1)-dimensional euclidean space R^{q+p+1} with a trivial normal bundle for $q-2 \leq p+1$. Therefore we can embed the natural sphere S^q in the disk bundle $B = \tilde{S}^q \times D^{p+1}$ such that S^q generates the q-dimensional homology group $H_q(B) \cong H_q(\tilde{S}^q \times D^{p+1}) \cong Z$ and that S^q has a trivial normal bundle (see Kervaire [7]). Making use of the Smale's *h*-cobordism theorem, it is easily verified that $\tilde{S}^q \times S^p$ is diffeomorphic to $S^q \times S^p$. It follows from Corollary 3 in [6] that the inertia group $I(S^p \times \tilde{S}^q)$ is trivial. Hence Theorem proves the proposition.

Proposition 5. If $p \equiv 2, 4, 5, 6 \pmod{8}$, then $\mathcal{S}(S^p \times S^q)$ is in one-to-one correspondence with $(G'_q/\sim) \times \Theta_{p+q}$.

Proof. Since $K_1(\pi_p(SO), \tilde{S}^q) = K_1(0, \tilde{S}^q) = S^{p+q}$ for $p \equiv 2, 4, 5, 6 \pmod{q}$

K. KAWAKUBO

8), the inertia group of $S^p \times \tilde{S}^q$ is trivial for every $\tilde{S}^q \in \Theta_q$. Therefore this proposition is an immediate consequence of Theorem.

5. A concluding remark.

Remark 2. The similar argument proves the classification theorem of smooth structures on a sphere bundle over sphere with a cross section. Denote by $M_h(\tilde{S}^q)$ the *p*-sphere bundle over a homotopy *q*sphere \tilde{S}^q with a characteristic map *h* which belongs to the image of the natural map $s: \pi_{q-1}(SO_p) \rightarrow \pi_{q-1}(SO_{p+1})$. Define a homomorphism $K[h, \tilde{S}^q]: \pi_p(SO_q) \rightarrow \Theta_{p+q}$ by

$$K[h, \tilde{S}^{q}](l) = K_{1}(l, \tilde{S}^{q}) + K_{2}(l, h)$$

(see Kawakubo [6]). Then we have

$$\begin{split} \mathcal{S}(M_h(S^q)) = \{ M_h(\tilde{S}^q_i) \ \# \ \tilde{S}^{p+q}_{ij} \mid \tilde{S}^q_i \in G'_{(q)} / \sim, \\ \tilde{S}^{p+q}_{ij} \in \Theta_{p+q} / K[h, \tilde{S}^q_i](\pi_p(SO_q)) \} \ for \ p+q \ge 6 \ and \ q+2 \ge p \ge 2. \end{split}$$

References

- [1] G. E. Bredon: A Π_* Module structure for Θ_* and applications to transformation groups. Ann. of Math., 86, 434-448 (1967).
- [2] W. Browder: Homotopy type of differentiable manifolds. Colloquium on algebraic topology notes. Aarhus, 42-46 (1962).
- [3] M. W. Hirsch and B. Mazur: Smoothings of piecewise-linear manifolds (to appear).
- [4] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in euclidean space. Topology, 3, 173-181 (1965).
- [5] K. Katase: π -imbeddings of homotopy spheres. Proc. Japan Acad., 44, 573-575 (1968).
- [6] K. Kawakubo: On the inertia groups of homology tori. J. Math. Soc. Japan, 21, 37-47 (1969).
- [7] M. A. Kervaire: An interpretation of G. Whitehead's generalization of the H. Hopf's invariant. Ann. of Math., 69, 345-364 (1959).
- [8] M. Kervaire and J. Milnor: Groups of homotopy spheres. I. Ann. of Math., 77, 504-537 (1963).
- [9] R. Lashof and M. Rothenberg: Microbundles and smoothings. Topology, 3, 357-388 (1965).
- [10] S. P. Novikov: Homotopically equivalent smooth manifolds. I. Izv. Acad. Nauk SSSR, Ser. Math., 28, 365-474 (1964). English Transl. Amer. Math. Soc. Transl., 48 (2), 271-396 (1965).
- [11] H. Toda: Composition methods in homotopy groups of spheres. Ann. of Math. Studies, No. 49 (1962).

218