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181. Continuity of Stochastic Processes on Metric Spaces
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Kobe College of Commerce

(Comm. by Kinjir5 KUNUGI, M. . A., Sept. 12, 1970)

1. After A. N. Kolmogorov had presented the continuity condi-
tion of stochastic processes ([5]), several generalizations have been
considered (e.g. [1]-[4]). But H. Cramr’s idea in [1] permits us to
obtain the continuity conditions in the more general situations; Let
{x(t, w) t e S} be stochastic processes, based on a probability space
(9, _, P), of which parameter t runs over a compact metric space (S, d),
and of which value is taken in a complete metric space (M, r). Here
their metrics are d and r, respectively. Denote by N(e) the minimal
number of -net of the space S. *) Then we establish the followings:

Theorem 1. Suppose that
( 1 P[r(x(t), x(s)) >_ g(d(t, s))] <_ q(d(t, s)),
where g(h) and q(h) are even, non-decreasing functions in hO, and
that

( 2 g(2-n)< c, N2(2-n-1).q(2-n+2)<
n=l n=l

Then the stochastic processes have continuous version.

Theorem 2. Suppose (1) above and that

( 3 , g(2-n-)<C.g(2-n), N2(2-n-1). q(2-n+2) < c,
k=l n=l

and
(4) g(4h) C’. g(h) for sufficiently small h,
where n is any positive integer, and C and C are some positive con-
stants. Then the stochastic processes have g-H61der continuous
version.

2. By An, we denote the elements o 2-n-net; An--(t;k--l, 2,

., N(2-n)}, n-- 1, 2, 3, ., and we set D- An. By F, we define the

space of all M-valued, non-random functions, and by F the elements
of F such that

Fn-- {f(t) r(f(x), f(y)) <__ g(d(x, y)),
for (x, y), x An, y e An+ and d(x, y)g2-n/2},

where g(h) is one cited in (1). Further, we set U--(F, and
j=n

*) log N(,) is called ,-entropy of the space S.
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U--I_) U. The function f(t) is denoted as the restriction of f($)e F
to D, and f($/) means the limiting value of {f(t), t e A, d(, t)
<_2-/,n-1,2, ...}, if it exists. Then we have;

Lemma 1. If f(t) e U, fD(t + exists uniquely and independently
of the sequence

Proof. For any positive e 0, there exists a number no such that, g(2-)e. For a sequence {t e A, d(t,t)<2 n--l, 2, 3,... },
and or any p> q > 1 +max (N, no) where N is the smallest number satis-
ying f(t) e U**, we estimate

p-1

r(fD(tq), f(tp))<__ r(f(tt), f(tt/l))<= g(d(tt, tt/))
t=q

t=q l=no

since d(tt, tt/l)<_d(tt, t)+d(t, tt/)_<2-/l+2-t2-/2, and tt e At, tt+
e A/. Thus, we have

lim r(f,(t), fo)-O.
This f0 does not depend on the sequence; In act, if we have a different
value f or another sequence {t ;t e A, d(t, t)_<2-/, n= 1, 2, 3, },
we can observe that, since d(t, t’n/)<__d(t, t)+d(t, t’/)<_2-/+2
2-n+2

r(fo, o)_ r(fo, f(t)) + r(fD(tn), fD(t+n+l)) - (f(t+), f)
_<2e + g(2 +),

or any 0 and or sufficiently large n. This proves the Lemma.
Lemma 2. For f(t) e U, we set h(t)=f(t+). Then h(t) is con-

tinuous in t.
Proof. We shall show by contradiction Assume that there exists

a sequence {x x + S} converging to t such that lira r(h(x), h(t))g:O.

For each integer m, we can find a point Xn: in the sequence {Xn} saris-
ying d(t, Xn:)<__2-, and further or each x:, there exists a sequence
{yq(n) yq(n) e Aq, d(xn:, yq(n))_ 2=q, q- 1, 2, }, or which we have
lim r(f(yq(n), h(x:))-O, due to Lemma 1. Since
q-o+

d(t, y(n))_ d(t, Xnm)-d(xnm, y(n))_2 +2=--2-+,
and y(n)e A, we have lira r(f(y(n)), h(t))-O. Further we esti-

mate
r(h(t), h(xn,)) r(h(t), f(y(n:))) + r(fg(y:(n.:)), h(x:))

<= r(h(t), f(y(n))) / , r(f(y(n:)), f,(yq+(n)))
q-=-

/ r(f(y(n)), h(x:)).
Here, by making the integer Q so large, we have or any e 0,

**) We shall not repeat below the indication of the number to which class of
U a function f(t) belongs, when it is clear in the context.
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r(f(y(n)),f(y/(n))) + r(f(yQ(n,)), h(x))

<= , r(f(yq(n)), f(y/(n))) + s.
q--?,

Further, since d(yq(n), yq+(n))<_ d(yq(n), x) + d(xn., yq/l(n))<_2-q
+2-q-<2-q/ it holds

r(f(yq(n)), f(yq /(n))) <: g(2-q/ ).

As a result, we have

r(h(t), h(xn)) <= r(h(t), f(y(n)))+ g(2-),

which implies, for sufficiently large m, a contradiction to the hypothesis
above.

Lemma 3. Let {x(t, w) t e S} be stochastic processes satisfying
the conditions (1) and (2). Then

P[x(t, w) U]- 1.
Proof. For the complement of Fn, F we have

P[x(t, w) e F] <= P[ max r(x(t), x(s)) " g(d(t, s))]
(t, s) AnAn+
d(t,s)<2"-n+

<: P[r(x(t), x(s) > g(d(t, s))]
(t,s) AnAn+
d(t,s)K2-n+

N(2-). N(2-n-). q(2-+).

Since we have U= F., and
j=n

P[x(t, oo) U] <__ P[x(t, o)) F.]
j--

J--n
we obtain

P[x(t, w) e U]=lim P[x(t, ) U]-0,

P[x(t, w) e U]=0.
3. Proof of Theorem 1. For each t in S, we define w-sets, Vt

and Wt respectively as follows;
V={(o x(t, o)=x(t+, o)},
W={o x(t, o) x(t +, o)}.

We shall prove that
P[Vt]- I, and P[Wt]-O.

For t e S, we choose a sequence {t t e A, d(t, t)<_2-/, d(t, t/)
<_ d(t, t) k- 1, 2, }. Then, due to Lemmas I and 3, we have

P[r(x(t), x(t)) >= g(d(t, t))] <_ q(d(t, t)),
and

lira r(x(t, w), x(t +, w)) =0,

with probability one; i.e. for any e>0 and any >0, and for some in-
teger K it holds or every k K
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P[r(x(t), x(t +)) >/2] <_ .
We set, 2or this (, m-min {/; g(d(t, t))/2}.
every ] max (m, K),

Hence

Then we estimate for

P[r(x(t), x(t)) > ( /2] __< q(d(t, t)).

P[r(x(t), x(t+ ))
<_ P[r(x(t), x(t)) > /2] + P[r(x(t), x(t+ )) > (/2]_

q(d(t, t)) + e.
Thus we get

P[r(x(t), x(t/ )) ]-0,
P[Vt]--I.

Clearly, Vt Wt-, and therefore P[Wt]--O. For every t in S and w,
we define

y(t, w)-
x(t +’ w) w e Yt,
a e M w e Wt.

It is observed that the stochastic processes {y(t, w)} is equivalent to the
{x(t, w)} and y(t, w) is continuous in t with probability one. The proo
of Theorem 1 is completed.

4. Proof of Theorem 2. At first we remark that the condition
(3) implies (2). In fact, it is obvious due to the ollowing;

g(2-) g(2-) + ] g(2-) __< , g(2-) + C. g(2-n).
k--1 k=l k=n+l

This implies the sample-continuity. Next we estimate

P[ max r(X(tn), X(tn/l)) > g(d(tn,
|tnAn,tn+ lAn+
[_d(tntn+ )

P[r(x(tn), X(tn+l)) >g(d(tn, tn+))]
tnAntn+An+
d(tn, tn + ) K2 +

__N(2--).q(2-n+).
By (3) and Borel-Cantelli lemma, there exists a number (w) with
probability one such that, 2or any n(o) and 2or any pair (t, tn+),
d(tn, tn+l)__2-n+, it holds

r(x(t), X(tn+x))__g(d(tn, tn+l))__g(2-n+).
We shall prove that or a t e A satisfying d(t, tn)__2-n+, t e An,
and mn (w), it holds
( 5 r(x(t), X(tn)
where C" is some positive constant. For such t, we can find a se-
quence {t tt e A, d(t, tt)_2- l-n, n+ 1, n+ 2, ., m}. Therefore
we get the ollowing estimate; Since d(tt, tt+)_2

r(x(t), X(tn)) r(X(tn++l), X(tn+))E g(2-n-+)
k=O k=O

_<_ g(2-n / 1) + g(2-) + C. g(2-n) <= C". g(2 + 1).
Thus (5) is verified. Further (5) holds or any t in S satisfying d(t, t)
_--2-n+l, tn An. In act, taking a sequence {tp tp e A, d(t, t)_<2-
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p--1,2,...}, we see that, for any )0, r(x(tp),x(t))e for sufficiently
large p, and that, since for p)n)v(w), d(t, t)<_d(t, t)+d(t, tn)<__2-"
+ 2-n + __< 2 +, it holds for sufficiently large p

r(x(t), X(tn)) "< r(x(t), x(tp)) + r(x(tp), x(tn))
=< + C’. g(2-+).

This implies that (5) holds even for t e S satisfying d(t, tn)g2-n+, and
n> u(w). Using this fact, we shall show g-HSlder continuity. Set a
number (w)-2-(). For any pair o points (t, s) such that d(t, s)< 5(o),
there exists an integer n satisfying

nu(w), and 2-n-ld(t,s)2-n.
On the other hand, we can find a t e A satisfying d(t, tn)<__2-n. Since
d(tn, s)<d(tn, t)+d(t,s)<2-+2-_ 2-+, we have

r(x(t), x(s)) <_ r(x(t), x(t)) + r(x(t), x(s))_
C". g(2-+ 1) + C"g(2 + 1)

_<2C"g(4.2--)
<_2C"g(4d(t, s)).

Thus we obtain with probability one, or d(t, s)(w), due to (4)
r(x(t), x(s)) <= C’g(d(t, s)),

where C’=2C". This proves Theorem 2.
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