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181. Continuity of Stochastic Processes on Metric Spaces

By Takayuki KAWADA
Kobe College of Commerce

(Comm. by Kinjird KuNuUGI, M. J. A., Sept. 12, 1970)

1. After A. N. Kolmogorov had presented the continuity condi-
tion of stochastic processes ([5]), several generalizations have been
considered (e.g. [1]-[4]). But H. Cramér’s idea in [1] permits us to
obtain the continuity conditions in the more general situations; Let
{x(t, w); t e S} be stochastic processes, based on a probability space
(2, B, P), of which parameter £ runs over a compact metric space (S, d),
and of which value is taken in a complete metric space (M,r). Here
their metrics are d and r, respectively. Denote by N(¢) the minimal
number of ¢-net of the space S.* Then we establish the followings:

Theorem 1. Suppose that
(1) Plr(x(?), (s)) > g(d(t, )< q(d(E, s)),
where g(h) and q(h) are even, non-decreasing functions in h>0, and
that

(2) glg(z_nK‘x” glNz(z‘"‘l)-q(z'””Koo,

Then the stochastic processes have continuous version.
Theorem 2. Suppose (1) above and that

o

n=1
and
(4) g(dh)<C’ - g(h) for sufficiently small h,
where n is any positive integer, and C and C’ are some positive con-
stants. Then the stochastic processes have g-Holder continuous
version.
2. By A,, we denote the elements of 2 "-net; A,={tt; k=1,2,

-+, N2 ™},n=1,2,8, ..., and we set D=O A,. By F, we define the
n=1

space of all M-valued, non-random functions, and by F, the elements
of F' such that
F.={f@®; r(f@), fy)=9(d=,y)),
for (z,¥),xec Ay yeA,,, and d(x, y) <277},

where ¢g(h) is one cited in (1). Further, we set U,,:ﬁ F,;, and
j=n

#®  log N(e) is called e-entropy of the space S.
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U=§)1 U,. The function f,(f) is denoted as the restriction of f(t) ¢ F

to D, and f,(t+) means the limiting value of {f,(t.),t.¢c A,, d(t,t,)
<27+ p=1,2, ...}, if it exists. Then we have;

Lemma 1. If f(t) e U, fp(t+) exists uniquely and independently
of the sequence {t,}.

Proof. For any positive ¢ >0, there exists a number », such that

i g2 %¥)<e. For a sequence {t,c 4,,d(t,t,)<2"*", n=1,2,3,...},

k=no

and for any p >q¢>1+max (N, n,) where N is the smallest number satis-
fying f(t) € Uy**, we estimate

1(folty), folt)) < & (ot folti)) = Z 9ty t,.)

gz g(z-l+2>§li 9@ H<e,

Since d(tb tl+1)$d(tl, t)+d(t’ tl+1)_<_2—1+1+2—L_<_2_L+2, and tl € Al’ tl+1
e A;,,. Thus, we have

l}}? r(fo(t), f)=0.

This f, does not depend on the sequence ; In fact, if we have a different
value f; for another sequence {¢,;t, ¢ 4,,d(t, t,)<2 ", n=1,2,3, ...},
we can observe that, since d(t,,t,,)<d(t,, D)+d(t,t,,)<2 142"
< 2-n+2’
(for JO) L 1(for fo(E)) +1(fp(tn), fo(tr)) +1(fp(tr .0, [7)
<2e+g(@2"*Y),

for any ¢ >0 and for sufficiently large n. This proves the Lemma.

Lemma 2. For f(t) e U, we set h(t)=fp(t+). Then h(t) is con-
tinuous in t.

Proof. We shall show by contradiction ; Assume that there exists
a sequence {z,; z, € S} converging to ¢ such that lim r(k(x,), h(t))#0.

n-—oco

For each integer m, we can find a point , , in the sequence {x,} satis-
fying d(t, x,,)<2 ™, and further for each x,,, there exists a sequence
W, ; Y, (ny) € Ay, A, Y(R)) <279, q=1,2, - . .}, for which we have
lim r(fp(Y (#n), M(,,)) =0, due to Lemma 1. Since

oo

A(t, Yu (M) < A(E, p,) + A(Xn,yy Ym (W) <27™ 4277 =27MH,
and ¥,(n,) € A, we have lim 7(fp(¥n(n,)), 1(£))=0. Further we esti-

m—soo

mate
T(h(t) ’ h(xnm)) § T(h(t), fD(ym(nm))) + /r(fD(ym (nm))’ h(xnm))

<1 (RO, £ oW (tm)) + "z;n oy @)), o Wemr(tn)))

+7(foWe(nn)), h(x,,,)).
Here, by making the integer @ so large, we have for any ¢ >0,

#¥)  'We shall not repeat below the indication of the number to which class of
U a function f(t) belongs, when it is clear in the context.
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;j;r(fp(yq(nm», T oW i)+ 1 F 5o, B, )

= gnr(fp(yq(nm)), FoWasima))) +e.
Further, since d(yq(nM)’ yq+1(nm)) < d(yq(nm), xnm) + d(x’nm, ?/q+1(nm)) <27«
+2-Q—1§2—q+2, it holds
2 7 Wat), o) 3 9270,

a=m

As a result, we have
r(h(t), M(,,,)) < 7r(h(), fo(Ym(nm)) + . OQZ} 29(2‘ ),

which implies, for sufficiently large m, a contradiction to the hypothesis
above.
Lemma 3. Let {x(t, w); t e S} be stochastic processes satisfying
the conditions (1) and (2). Then
Plx(t, w) e Ul=1.
Proof. For the complement of F',,, F, we have
Plz(t,w) e F,]<P[ max r(x(t), x(s))>g(d(t, s))]

(t,8)EApXA
e, B2

< > Plr(®), 2(s)>g(d(t, 9))]

T (9 ednxdpi1
@5 La—n+a

<N@ ™).N@2"1Y.q2 "),

Since we have U;:p F<, and
Pla(t, o) e Usl< j}”: Pla(t, o) € F?]

< /z N2 277+,
we obtain )
Plx(t, w) € Ul=lim P[x(t, w) € Us1=0,

Pla(t, w) € U]=0.
3. Proof of Theorem 1. For each ¢t in S, we define w-sets, V,

and W, respectively as follows;

Vi={w; 2, 0)=2,(t+, w)},

W,={w; 2, ®)#zp(t+, w)}.
We shall prove that

P[V,]=1, and P[W,]=0.
For teS, we choose a sequence {f.;t.e A, d(t,t,)<27%+ d(t, t,,)
<d(t,ty); k=1,2, ...}, Then, due to Lemmas 1 and 3, we have

Plr(z(t), x(t.)) = g(d(t, tNI< q(d(t, ty)),
and
lim /r(x(tk’ (D), xD(t+ y (z))):O,

k—oco
with probability one; i.e. for any ¢ >0 and any 6 >0, and for some in-
teger K it holds for every k> K
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Plr(x(ty), xp(t+))>0/21<e.
We set, for this d, m,=min {I; g(d(t, t))<0/2}. Then we estimate for
every 7 >max (m;, K),
Plr(a(d), a(t,) >6/2)< ¢(d(E, t,).

Hence
Plr(x(t), xp(t+)) >0l
< Plr(x(t), 2(t))>0/2]+ Plr(x(ty), xp(t+))>0/2]
<q(d(,t)) +e.
Thus we get

Plr(z(t), xp(t+)) >01=0,
Clearly, V,N W,=60, and therefore P[W,]=0. For every ¢t in S and o,
we define
xD(t'l’) 0)) ; (ORS Vt’
Y@, @)= aeM; weW,.
It is observed that the stochastic processes {y(¢, w)} is equivalent to the
{x(t, w)} and ¥(f, @) is continuous in ¢ with probability one. The proof
of Theorem 1 is completed.
4, Proof of Theorem 2. At first we remark that the condition
(3) implies (2). In fact, it is obvious due to the following;

é 9(2"6):767:_.‘1 g(z—k) +kilg(2—k)§’ci:1 g(2_k) + C. g(z_n).
This implies the sample-continuity. Next we estimate
P[ max  r(x(t,), x(t,,)) >gd(t,, tn+1))]

tn€An.tn+1€4n+1
A(tp,tn+1)S2—N+2

S Z P[T(x(tn)’ m(tn+1)) >g(d(tn’ tn+1))]

T tp€dp,inr1€dnt1
dltn, tn+1)<2—1+3

SN2 -q27™).
By (38) and Borel-Cantelli lemma, there exists a number yv(w) with
probability one such that, for any #>v(w) and for any pair (¢,,t,.),
d(t,, t,,) <22 it holds

r(@(t,), 2(t,, )< g(d(t,, t,,)) < g2 "),

We shall prove that for a t, ¢ A,, satisfying d(¢,,t,)<2 "4 t,c A,,
and m>n>y(w), it holds
(5) r(@(tn), ()< C” - g(27""),
where C” is some positive constant. For such ¢,, we can find a se-
quence {¢;;t, e A, d(t,,t)<27 ; l=n,n+1,n+2, ..., m}. Therefore
we get the following estimate ; Since d(¢,, ¢,,,) <271,

r(@(t), x(tn))g’"glr(x(tnw), Bt ) S 23 9@

<9@ ") +9@2 M+ C-g@2™MZC"- g2,
Thus (5) is verified. Further (5) holds for any ¢ in S satisfying d(¢, ¢,)
<2 " t, e, In fact, taking a sequence {¢,; t,c 4,,d(t,t,)<277;
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p=1,2, ...}, we see that, for any >0, r(x(t,), (t)) <e for sufficiently
large p, and that, since for p>n>v(w), d(t,,t,)<d(t,, t) +d(t,t,)<L27?
42 m+1L2-7+2 it holds for sufficiently large p
(@), () =r(@@), 2(¢,) +r(2(t,), ©(¢.)
Se+C"-g@2).
This implies that (5) holds even for t ¢ S satisfying d(t, t,) <2 **!, and
n>v(w). Using this fact, we shall show g-Hélder continuity. Set a
number §(w)=2"*“. For any pair of points (¢, s) such that d(t, s) <d(w),
there exists an integer n satisfying
n>v(w), and 27 "'<Ld(t,8)<27",
On the other hand, we can find a £, ¢ 4, satisfying d(¢,%,)<2-". Since
d(t,,s)<d(t,,t)+d(t,s)<2"4+2"=2""*1 we have
r(x(t), 2(s)) < r(@(t), x(t,) + r(@(t,), 2(s)
<C”.g@ "4+ C"g2 ")
<2C"g(4.27"°Y)
<2C"g(4d(t, s)).
Thus we obtain with probability one, for d(¢, s) <d(w), due to (4)
r(@(t), x(s)) = C’g(d(t, 8)),
where C’'=2C"”. This proves Theorem 2.
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