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226. On Realization o the Discrete Series
for Semisimple Lie Groups

By Ryoshi HOT:A

(Comm. by Kunihiko KOD.m., M. Z. ,., Nov. 12, 1970)

This note is an announcement of a result, which says, briefly, that
most of the discrete series for a semisimple Lie group are realized as
certain eigenspaces of the Casimir operator on the symmetric space
(Theorem 2). This construction is in some sense a generalization of
the methods adopted in [1], [2], [9] for special groups and in [5] for the
groups of hermitian type. Also, [6] indicates the above method of
realization. Further, as for alternative methods to realize most of the
discrete series, we refer to the recent works [5], [8]. Our technique
used here depends heavily on that of [5]. A detailed exposition with
full proofs will appear elsewhere.

1o Let G be a connected non-compact semisimple Lie group with
a compact Cartan subgroup. We assume, for convenience, that G has
a faithful finite dimensional representation and its complexification G
is simply connected. Fix a maximal compact subgroup K of G and a
Cartan subgroup H contained in K. We denote by , and the Lie
algebras corresponding to G,K and H respectively. For complexifi-
cations ;i, c, t)c of , , , we denote by / the root system of (c, c),
and by We the Weyl group of (c, )c). Taking a positive root system
P of z/fixed once for all, P (resp. P) denotes the set of a positive com-
pact (resp. non-compact) roots. Let L be the character group of H, L’
the set of regular elements in L. Introducing an inner product (,) on
L induced by the Killing form, we put e()=sign 1-[e (, ) for e L’,
and e()=0 for e L--L’. We also put e()=sign eP (, ) if e L
is C-regular, and e()=0 if is C-singular. For discrete series, the
following fact is known by Harish-Chandra [3]. Let ’ be the discrete
series for G. For e L’, there then exists a unique element w() e Ca,
and the map L’ w()e is surjective, while w(,)--w(’) if and
only if there exists w e We such that w ’. We shall denote by tg()
the character of w().

For a finite subset A of L, we shall denote by A] its cardinal num-
ber and put (A= ,.e o. Put p=(P)/2, p=(P)/2 and p=p--p.
If e(2+p):/:0 for eL, there exists a unique we W such that
w(2 / p)--p is kC-dominant. We then denote by [2] the equivalence
class to which belongs an irreducible K-module with highest weight
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W(2+p)--p. For the sake of notational convenience, we put [2]--0
if e(2 + p)--0. We shall denote by Z(2) the character of [2].

2. For a finite dimensional unitary K-module V, we denote by c?
the homogeneous vector bundle over G/K associated to V, whose fiber
has an invariant hermitian metric. Throughout this note, for a K-
module the corresponding script letter denotes the homogeneous vector
bundle associated to the K-module given. Let L(C(]) (resp. C(C(?)) be
a space o all square-integrable (resp. differentiable) sections of cf?,
which is naturally regarded as the space consisting o all V-valued
square-integrable (resp. differentiable) unctions f satisfying f(gk)
=k-f(g) or k e K, g e G. Now assume that there are given two K-
modules V, W. For a G-invariant linear differential operator D’C(C)
-C(), the maximal extension D" L.(cf)--+L(q/I;) means the closed
linear operator whose domain consists of f e L(c(;) such that Df e L(q/)
in the sense of distributions. We shall hereafter consider differential
operators on square-integrable sections in this sense. Let D*" L()
L.(c(?) be the maximal extension of the ormal adjoint operator for
D. We then have the unitary representations of G on the Hilbert spaces
KerD and Ker D*. Let (Ker D) (resp. (Ker D*)) be the smallest
closed invariant subspace which contains every irreducible closed in-
variant subspace of Ker D (resp. Ker D*). Denote by 7r (resp. 7) the
representation on the space (Ker D) (resp. (Ker. D*)). It is then

shown that the operator ()-[(g)r(g)dg is o trace class or a

compactly supported C-function on G, and so defines an invariant
distribution Trace on G (the same holds also for ). The follow-
ing theorem can be proved by a similar method to the one in [5].

Theorem 1. Under the above situation, assume that D is at most
a first order operator, and denote by ), ),/ the characters of V, W.
Suppose that

Zr-- Zw- e(2 + p) ,Qce (-- I)’Q’z(-l-
for some 2 e L such that e(2+ p)g=O. Then

Trace 7r-- Trace 7r-(--
where Q={ e P (2 + p, )

Corollary. For 2eL, take such K-modules V, W as [V]
=@[2+(Q)] where the summation runs over every QCPn such that
e(2+p)e(2+p+<Q))-(-1)Q, and as [W]-[2+<Q)] where the
summation runs over every QcP such that (2+p)(2+
=(--1) ’1+’. Then for any first order operator D, the formula in
Theorem 1 holds. Here, [V], [W] denote the equivalence classes to
which V, W belong.

:. Let V+<> be an irreducible K-module belonging to
or 2eL, QcP, when e(+p+<Q})=/:0, and denote by w+<> the
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unique element of Wa such that w/<>(2 +p + (Q)) is kC-dominant. Let
/2 be the Casimir operator of G. Then the action of 9 on L2(G) as a
left invariant differential operator defines the action (9) on L2(ci?/<>)
because/2 belongs to the center of the universal enveloping algebra of. Put H?={f e L2(c(?/) (9)f--(2 + 2p, 2)f}. For w e W, we put
A(w, Q) (p-(Q}, 2(Q) (Q} p)/2 + (p, p (Q} w(p
+ (p, p)/2. We then have the ollowing lemma in a similar way to the
one in [6].

Lemma. If 1(2 + p, fl)lA(w+<>, Q) for every fle Pn, then H-O

In [4], we obtained an elliptic complex c. whose first term is the
homogeneous vector bundle associated to an irreducible K-module V
with lowest weight 2 + 2p (the ()-complex for 2 under an admissible
linear order of z in terminology of [4]). One can define the square-
integrable "cohomology" space Hg(c(?*) or this elliptic complex. The
ollowing proposition is shown by Theorem 1 and the above Lemma.

Proposition. There exists a non-negative constant a such that
the following holds. If 1(2 + p, a)la for every a e P, then Hq(c* ) =/= 0
and the irreducible unitary representation of G with character (+) is
realized as a closed subspace of Hq(c(?*) for q-I Q.

4. For A e L’, choose a positive root system such as P={a
(A, a)0} and fix the linear order on z/ induced by P. Put 2=A--p.
Then --(2 / 2p) is C-dominant with respect to this linear order. Let
V be the irreducible K-module with lowest weight 2 +2p, and put
A(w, Q)=((Q},(Q})/2+(p, p--Wpn) and b=maxew,QA(w, Q).
The next theorem follows from Corollary to Theorem 1 and Lemma in
:.

Theorem 2. If 1(2+ p, )lb for every fl e P, then the Hilbert
space

{f e L(C) (9)f= (2 + 2p, 2)7}
gives an irreducible unitary representation belonging to the discrete
series for G, whose character is

Remark. In view o Harish-Chandra’s result cited in 1, we see
that "most" of the discrete series are realized in this procedure. This
construction is partially a generalization o the method in [9] or the
de Sitter group and an answer to the proposal in [6]. Further, when
(G, K) is a symmetric pair o hermitian type and that all elements in

P are totally positive, Theorem 2 is included in Proposition 9.1 in [5].
o As for a relation with another realization of the discrete series,

we shall refer to the one by means of Schmid’s operator (see [4], [7]).
For A e L’, we choose P and define 2, V as in 4. Put c=lmin,
(pn-(Q}, )1. Then 2 satisfies the condition () in terminology of [4]
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if [( / p, C01/> C for every c e P. Hence for a K-module V whose ir-
reducible components consist of [ +] where/5 runs over the elements
on P, we have an elliptic first order operator

L2(C(?)L2(C(?)
(see [4], [7]). We denote by d( the null space of _. Put c’ =lmin,e,e
(P--P--, )1. It is then easily seen that the multiplicity of [] in
is at most one, if I( / p, c)lmax (c, c’) for every c e P, from Theorem
6.2 in [4] (see also [7]). Taking the unique element w0 e We such that
woP-- --P, we put c"--max A(w0, Q), and c-max (c, c’, c"). Com-
bining the above fact with Theorem 1 and Lemma in 3, one can com-
plete a proof of the following theorem.

Theorem 3*). If ]( + p, c)lc for every c e z, then d( gives an
irreducible unitary representation with character

Remark. Under the condition of Theorem 3, we see that ( is
contained in . Moreover, we can show that is irreducible, which
implies that -d(. Therefore, under this condition, the two
procedures to realize the discrete series are equivalent.
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*) The fact in Theorem 3 was communicated in the letter from Prof. Schmid
without a proof.


