226. On Realization of the Discrete Series for Semisimple Lie Groups

By Ryoshi HOTTA

(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1970)

This note is an announcement of a result, which says, briefly, that most of the discrete series for a semisimple Lie group are realized as certain eigenspaces of the Casimir operator on the symmetric space (Theorem 2). This construction is in some sense a generalization of the methods adopted in [1], [2], [9] for special groups and in [5] for the groups of hermitian type. Also, [6] indicates the above method of realization. Further, as for alternative methods to realize most of the discrete series, we refer to the recent works [5], [8]. Our technique used here depends heavily on that of [5]. A detailed exposition with full proofs will appear elsewhere.

Let G be a connected non-compact semisimple Lie group with 1. a compact Cartan subgroup. We assume, for convenience, that G has a faithful finite dimensional representation and its complexification G^c is simply connected. Fix a maximal compact subgroup K of G and a Cartan subgroup H contained in K. We denote by g, f and h the Lie algebras corresponding to G, K and H respectively. For complexifications $\mathfrak{g}^{\mathcal{C}}, \mathfrak{k}^{\mathcal{C}}, \mathfrak{h}^{\mathcal{C}}$ of $\mathfrak{g}, \mathfrak{k}, \mathfrak{h}$, we denote by \varDelta the root system of $(\mathfrak{g}^{\mathcal{C}}, \mathfrak{h}^{\mathcal{C}})$, and by W_G the Weyl group of $(\mathfrak{t}^C, \mathfrak{h}^C)$. Taking a positive root system P of Δ fixed once for all, P_k (resp. P_n) denotes the set of a positive compact (resp. non-compact) roots. Let L be the character group of H, L'the set of regular elements in L. Introducing an inner product (,) on L induced by the Killing form, we put $\varepsilon(\lambda) = \text{sign } \prod_{\alpha \in P} (\lambda, \alpha)$ for $\lambda \in L'$, and $\varepsilon(\lambda) = 0$ for $\lambda \in L - L'$. We also put $\varepsilon_k(\lambda) = \text{sign } \prod_{\alpha \in P_k} (\lambda, \alpha)$ if $\lambda \in L$ is \mathfrak{t}^{c} -regular, and $\varepsilon_{k}(\lambda) = 0$ if λ is \mathfrak{t}^{c} -singular. For discrete series, the following fact is known by Harish-Chandra [3]. Let \mathcal{E}_d be the discrete series for G. For $\lambda \in L'$, there then exists a unique element $\omega(\lambda) \in \mathcal{E}_d$, and the map $L' \ni \lambda \mapsto \omega(\lambda) \in \mathcal{E}_d$ is surjective, while $\omega(\lambda) = \omega(\lambda')$ if and only if there exists $w \in W_G$ such that $w\lambda = \lambda'$. We shall denote by $\Theta_{\omega(\lambda)}$ the character of $\omega(\lambda)$.

For a finite subset A of L, we shall denote by |A| its cardinal number and put $\langle A \rangle = \sum_{\alpha \in A} \alpha$. Put $\rho = \langle P \rangle / 2$, $\rho_k = \langle P_k \rangle / 2$ and $\rho_n = \rho - \rho_k$. If $\varepsilon_k (\lambda + \rho_k) \neq 0$ for $\lambda \in L$, there exists a unique $w \in W_G$ such that $w(\lambda + \rho_k) - \rho_k$ is k^c -dominant. We then denote by $[\lambda]$ the equivalence class to which belongs an irreducible K-module with highest weight

No. 9]

 $w(\lambda + \rho_k) - \rho_k$. For the sake of notational convenience, we put $[\lambda] = 0$ if $\varepsilon_k(\lambda + \rho_k) = 0$. We shall denote by $\chi(\lambda)$ the character of $[\lambda]$.

2. For a finite dimensional unitary K-module V, we denote by \mathcal{V} the homogeneous vector bundle over G/K associated to V, whose fiber has an invariant hermitian metric. Throughout this note, for a Kmodule the corresponding script letter denotes the homogeneous vector bundle associated to the K-module given. Let $L_2(\mathbb{CV})$ (resp. $C^{\infty}(\mathbb{CV})$) be a space of all square-integrable (resp. differentiable) sections of CV, which is naturally regarded as the space consisting of all V-valued square-integrable (resp. differentiable) functions f satisfying f(gk) $=k^{-1}f(g)$ for $k \in K, g \in G$. Now assume that there are given two Kmodules V, W. For a G-invariant linear differential operator $D: C^{\infty}(CV)$ $\rightarrow C^{\infty}(\mathcal{W})$, the maximal extension $D: L_2(\mathcal{W}) \rightarrow L_2(\mathcal{W})$ means the closed linear operator whose domain consists of $f \in L_2(\mathbb{CV})$ such that $Df \in L_2(\mathbb{CV})$ in the sense of distributions. We shall hereafter consider differential operators on square-integrable sections in this sense. Let $D^*: L_2(\mathcal{W})$ $\rightarrow L_2(CV)$ be the maximal extension of the formal adjoint operator for D. We then have the unitary representations of G on the Hilbert spaces Let $(\text{Ker } D)_d$ (resp. $(\text{Ker } D^*)_d$) be the smallest Ker D and Ker D^* . closed invariant subspace which contains every irreducible closed invariant subspace of Ker D (resp. Ker D*). Denote by π_v (resp. π_w) the representation on the space $(\text{Ker } D)_d$ (resp. $(\text{Ker. } D^*)_d$). It is then shown that the operator $\pi_V(\varphi) = \int_G \varphi(g) \pi_V(g) dg$ is of trace class for a compactly supported C^{∞} -function φ on G, and so defines an invariant distribution Trace π_V on G (the same holds also for π_W). The following theorem can be proved by a similar method to the one in [5].

Theorem 1. Under the above situation, assume that D is at most a first order operator, and denote by χ_V, χ_W the characters of V, W. Suppose that

$$\chi_{v} - \chi_{w} = \varepsilon_{k}(\lambda + \rho) \sum_{Q \subset P_{n}} (-1)^{|Q_{\lambda}|} \chi(\lambda + \langle Q \rangle)$$

for some $\lambda \in L$ such that $\varepsilon(\lambda + \rho) \neq 0$. Then

Trace $\pi_V - \text{Trace } \pi_W = (-1)^{|Q_\lambda|} \Theta_{\omega(\lambda + \rho)}$

where $Q_{\lambda} = \{\beta \in P_n; (\lambda + \rho, \beta) > 0\}.$

Corollary. For $\lambda \in L$, take such K-modules V, W as $[V] = \bigoplus [\lambda + \langle Q \rangle]$ where the summation runs over every $Q \subset P_n$ such that $\varepsilon_k(\lambda + \rho)\varepsilon_k(\lambda + \rho_k + \langle Q \rangle) = (-1)^{|Q|}$, and as $[W] = \bigoplus [\lambda + \langle Q \rangle]$ where the summation runs over every $Q \subset P_n$ such that $\varepsilon_k(\lambda + \rho)\varepsilon_k(\lambda + \rho_k + \langle Q \rangle) = (-1)^{|Q|+1}$. Then for any first order operator D, the formula in Theorem 1 holds. Here, [V], [W] denote the equivalence classes to which V, W belong.

3. Let $V_{\lambda+\langle Q\rangle}$ be an irreducible K-module belonging to $[\lambda+\langle Q\rangle]$ for $\lambda \in L, Q \subset P_n$, when $\varepsilon_k(\lambda+\rho_k+\langle Q\rangle) \neq 0$, and denote by $w_{\lambda+\langle Q\rangle}$ the

No. 9] Realization of Discrete Series for Semisimple Lie Groups

unique element of W_G such that $w_{\lambda+\langle Q \rangle}(\lambda+\rho_k+\langle Q \rangle)$ is k^c -dominant. Let Ω be the Casimir operator of G. Then the action of Ω on $L_2(G)$ as a left invariant differential operator defines the action $\nu(\Omega)$ on $L_2(\Box_{\lambda+\langle Q \rangle})$ because Ω belongs to the center of the universal enveloping algebra of \mathfrak{g}^c . Put $H^q_{\lambda} = \{f \in L_2(\Box_{\lambda+\langle Q \rangle}); \nu(\Omega)f = (\lambda+2\rho, \lambda)f\}$. For $w \in W_G$, we put $A_{\lambda}(w, Q) = (\rho - \langle Q \rangle, 2\langle Q_{\lambda} \rangle - \langle Q \rangle - \rho)/2 + (\rho_k, \rho_n - \langle Q_{\lambda} \rangle - w(\rho_n - \langle Q_{\lambda} \rangle)) + (\rho, \rho)/2$. We then have the following lemma in a similar way to the one in [6].

Lemma. If $|(\lambda + \rho, \beta)| > A_{\lambda}(w_{\lambda + \langle Q \rangle}, Q)$ for every $\beta \in P_n$, then $H^q_{\lambda} = 0$ if $Q \neq Q_{\lambda}$.

In [4], we obtained an elliptic complex $\mathcal{O}_{\lambda}^{*}$ whose first term is the homogeneous vector bundle associated to an irreducible K-module V_{λ} with lowest weight $\lambda + 2\rho_{k}$ (the (#)-complex for λ under an admissible linear order of Δ in terminology of [4]). One can define the squareintegrable "cohomology" space $H_{2}^{s}(\mathcal{O}_{\lambda}^{*})$ for this elliptic complex. The following proposition is shown by Theorem 1 and the above Lemma.

Proposition. There exists a non-negative constant a such that the following holds. If $|(\lambda + \rho, \alpha)| > a$ for every $\alpha \in P$, then $H_2^{q_{\lambda}}(\mathbb{CV}_{\lambda}^*) \neq 0$ and the irreducible unitary representation of G with character $\Theta_{\omega(\lambda+\rho)}$ is realized as a closed subspace of $H_2^{q_{\lambda}}(\mathbb{CV}_{\lambda}^*)$ for $q_{\lambda} = |Q_{\lambda}|$.

4. For $\Lambda \in L'$, choose a positive root system such as $P = \{\alpha \in \Delta; (\Lambda, \alpha) < 0\}$ and fix the linear order on Δ induced by P. Put $\lambda = \Lambda - \rho$. Then $-(\lambda + 2\rho_k)$ is \sharp^c -dominant with respect to this linear order. Let V_{λ} be the irreducible K-module with lowest weight $\lambda + 2\rho_k$, and put $A(w, Q) = (\langle Q \rangle, \langle Q \rangle)/2 + (\rho_k, \rho_n - w\rho_n)$ and $b = \max_{w \in W_G, Q \subset P_n} A(w, Q)$. The next theorem follows from Corollary to Theorem 1 and Lemma in 3.

Theorem 2. If $|(\lambda + \rho, \beta)| > b$ for every $\beta \in P_n$, then the Hilbert space

$$\mathfrak{H}_{\lambda} = \{ f \in L_2(\mathbb{C}\mathcal{V}_{\lambda}) ; \nu(\Omega) f = (\lambda + 2\rho, \lambda) f \}$$

gives an irreducible unitary representation belonging to the discrete series for G, whose character is $\Theta_{\omega(\lambda+\rho)}$.

Remark. In view of Harish-Chandra's result cited in 1, we see that "most" of the discrete series are realized in this procedure. This construction is partially a generalization of the method in [9] for the de Sitter group and an answer to the proposal in [6]. Further, when (G, K) is a symmetric pair of hermitian type and that all elements in P_n are totally positive, Theorem 2 is included in Proposition 9.1 in [5].

5. As for a relation with another realization of the discrete series, we shall refer to the one by means of Schmid's operator (see [4], [7]). For $\Lambda \in L'$, we choose P and define λ , V_{λ} as in 4. Put $c^{*} = |\min_{\alpha \in P_{k}, Q \subset P_{n}} (\rho_{n} - \langle Q \rangle, \alpha)|$. Then λ satisfies the condition (#) in terminology of [4]

if $|(\lambda + \rho, \alpha)| \ge c^*$ for every $\alpha \in P_k$. Hence for a K-module V_{λ}^1 whose irreducible components consist of $[\lambda + \beta]$ where β runs over the elements on P_n , we have an elliptic first order operator

 $\mathcal{D}: L_2(\mathcal{OV}_{\lambda}) \to L_2(\mathcal{OV}_{\lambda})$

(see [4], [7]). We denote by \mathcal{H}_{λ} the null space of \mathcal{D} . Put $c' = |\min_{\alpha \in P_k, \beta \in P_n} (\rho_k - \rho_n - \beta, \alpha)|$. It is then easily seen that the multiplicity of $[\lambda]$ in \mathcal{H}_{λ} is at most one, if $|(\lambda + \rho, \alpha)| > \max(c^*, c')$ for every $\alpha \in P_k$, from Theorem 6.2 in [4] (see also [7]). Taking the unique element $w_0 \in W_G$ such that $w_0 P_k = -P_k$, we put $c'' = \max_{Q \subset P_n} A(w_0, Q)$, and $c = \max(c^*, c', c'')$. Combining the above fact with Theorem 1 and Lemma in 3, one can complete a proof of the following theorem.

Theorem 3*). If $|(\lambda + \rho, \alpha)| > c$ for every $\alpha \in \Delta$, then \mathcal{H}_{λ} gives an irreducible unitary representation with character $\Theta_{\alpha(\lambda+\rho)}$.

Remark. Under the condition of Theorem 3, we see that \mathcal{H}_{λ} is contained in \mathfrak{F}_{λ} . Moreover, we can show that \mathfrak{F}^{λ} is irreducible, which implies that $\mathfrak{F}_{\lambda} = \mathcal{H}_{\lambda}$. Therefore, under this condition, the two procedures to realize the discrete series are equivalent.

References

- V. Bargmann: Irreducible unitary representations of the Lorentz group. Ann. of Math., 48, 568-640 (1947).
- [2] Harish-Chandra: Representations of semisimple Lie groups. V. Amer. J. Math., 78, 1-41 (1956).
- [3] ——: Discrete series for semisimple Lie groups. II. Acta Math., 116, 1-111 (1966).
- [4] R. Hotta: Elliptic complexes on certain homogeneous spaces. Osaka J. Math., 7, 117-160 (1970).
- [5] M. S. Narasimhan and K. Okamoto: An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type. Ann. of Math., 91, 486-511 (1970).
- [6] K. Okamoto: On induced representations. Osaka J. Math., 4, 85-94 (1967).
- [7] W. Schmid: Homogeneous complex manifolds and representations of semisimple Lie groups. Thesis, Proc. Nat. Acad. Sci. U.S.A., 59, 56-59 (1968).
- [8] ——: On a conjecture of Langlands. to appear.
- [9] R. Takahashi: Sur les représentations unitaires des groupes de Lorentz généralisés. Bull. Soc. Math. France, 91, 289-433 (1963).

^{*)} The fact in Theorem 3 was communicated in the letter from Prof. Schmid without a proof.