242. On Products of Quasi-Perfect Maps

By Yoshio TANAKA

(Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1970)

1. Introduction. The purpose of this paper is to give a necessary and sufficient condition for the product map to be a quasi-perfect map under the condition that the image of the product map is a sequential space. Namely we shall prove

Theorem 1. Let $f_i: X_i \rightarrow Y_i$ $(i=1,2,\cdots)$ be quasi-perfect maps and $\prod_{i=1}^{\infty} Y_i$ a sequential space. Then the following properties are equivalent.

- (a) $\prod_{i=1}^{\infty} f_i$ is a quasi-perfect map.
- (b) $\prod_{i=1}^{\infty} X_i$ satisfies the condition (C₁) below;
- (C₁): If each K_i is a closed countably compact subset of X_i , then $\prod_{i=1}^{\infty} K_i$ is countably compact in $\prod_{i=1}^{\infty} X_i$.
- (c) $\prod_{i=1}^{\infty} f_i^{-1}(C_i)$ is countably compact in $\prod_{i=1}^{\infty} X_i$ for each convergent sequence C_i in Y_i . Here, by a convergent sequence we mean the union of the sequence and its limit point.

According to S. P. Franklin [4], a space X is called a sequential space if a subset F of X is closed whenever $F \cap C$ is closed for every compact metric subset C of X, and such a space is precisely the quotient of a metric space.

First countable spaces are sequential. Of course, sequential spaces are k-spaces. But the converse does not hold. Indeed, the Stone-Cěch compactification of a normal and non-compact space is not sequential.

We assume all maps are continuous and onto, and all spaces are T_2 .

- 2. Proof of Theorem 1. First of all, we consider the following condition (C_0) on a space X.
 - (C_0) : Each sequence whose closure is countably compact has a subsequence whose closure is compact.

The condition (k_0) in T. Chiba [2] implies the condition (C_0) , and the converse is true in regular q-spaces in the sense of E. Michael [7].

A space X is called isocompact by P. Bacon [1] if every closed countably compact is compact.

Lemma 1. K-spaces, locally isocompact spaces, sequentially compact spaces, and regular spaces whose each point is a G_{δ} -set all satisfy the condition (C_0) .

Proof. Let X be a k-space and $\{x_i; i \in N\}$ a sequence in X whose closure is countably compact. We assume all points x_i are distinct.

Let x_0 be an accumulation point of the set $\{x_i; i \in N\}$. Then $\{x_i; i \in N\}$ — $\{x_0\}$ is not closed. Hence there exists a compact subset K of X such that $K \cap (\{x_i; i \in N\} - \{x_0\})$ is not closed, which implies the infinite subset $K \cap (\{x_i; i \in N\} - \{x_0\})$ has a compact closure. Since a regular countably compact whose each point set is a G_δ -set is first countable, a regular space whose each point is a G_δ -set satisfies the condition (C_0) . Since the proof for the other cases is easy, it is omitted.

By the Cantor "diagonal process" (for example, see p. 231 in J. Dugundji [3]), we have

Lemma 2. If each X_i satisfies the condition (C_0) , then $\prod_{i=1}^{\infty} X_i$ satisfies the condition (C_1) .

Proof of Theorem 1. (a) \rightarrow (b): Let K_i be closed countably compact in X_i . Then $f_i(K_i)$ is closed countably compact in X_i . Since sequential spaces are k-spaces, from Lemma 1, each Y_i satisfies the condition (C_0) . Hence $\prod_{i=1}^{\infty} f_i(K_i)$ is countably compact by Lemma 2. Since $\prod_{i=1}^{\infty} K_i \subset (\prod_{i=1}^{\infty} f_i)^{-1} (\prod_{i=1}^{\infty} f_i(K_i))$ and $(\prod_{i=1}^{\infty} f_i)^{-1} (\prod_{i=1}^{\infty} f_i(K_i))$ is countably compact by the quasi-perfectness of $\prod_{i=1}^{\infty} f_i$, $\prod_{i=1}^{\infty} K_i$ is countably compact.

- (b) \rightarrow (c): Since each convergent sequence C_i in Y_i is compact and f_i is quasi-perfect, $f_i^{-1}(C_i)$ is closed countably compact. Hence $\prod_{i=1}^{\infty} f_i^{-1}(C_i)$ is countably compact for each convergent sequence C_i in Y_i by (b).
- (c) \rightarrow (a): Let F be a closed subset of $\prod_{i=1}^{\infty} X_i$. We shall prove $(\prod_{i=1}^{\infty} f_i)(F)$ is closed. Suppose $(\prod_{i=1}^{\infty} f_i)(F)$ is not closed. Since $\prod_{i=1}^{\infty} Y_i$ is sequential, from S. P. Franklin [4; Proposition 1.1], there exists a sequence $\{y_n : n \in N\}$ such that $y_n = (y_{in}) \in (\prod_{i=1}^{\infty} f_i)(F)$, that is, $\prod_{i=1}^{\infty} (f_i^{-1}(y_{in})) \cap F \neq \phi$, and $\{y_n : n \in N\}$ converges to a point $p = (p_i)$ $\notin (\prod_{i=1}^{\infty} f_i)(F)$. Let $A_{in} = \{y_{ij} : j \geq n\} \cup \{p_i\}$, and $F_n = \prod_{i=1}^{\infty} (f_i^{-1}(A_{in})) \cap F$. Then each sequence A_{in} is a convergent sequence. Hence $\prod_{i=1}^{\infty} (f_i^{-1}(A_{in}))$ is closed countably compact by (c). Moreover $F_n \supset F_{n+1} \neq \phi$ for each $n \in N$. Therefore $\bigcap_{n=1}^{\infty} F_n \neq \phi$, which implies $\prod_{i=1}^{\infty} (f_i^{-1}(p_i)) \cap F \neq \phi$. But this is impossible. Thus $\prod_{i=1}^{\infty} f_i$ is closed map. Since $(\prod_{i=1}^{\infty} f_i)^{-1}(y)$ is countably compact for each point y of $\prod_{i=1}^{\infty} Y_i$, $\prod_{i=1}^{\infty} f_i$ is a quasi-k-space.
- Remark. (i): From the above proof, we see that a map of X onto a sequential space Y is quasi-perfect if and only if $f^{-1}(C)$ is countably compact for each convergent sequence C in Y. From this and S. Hanai [5; Corollary 1.7], a space X is countably compact if and only if the projection $P: X \times Y \to Y$ is closed for every sequential space Y.
- (ii): The product map of quasi-perfect maps need not be closed and not even be quotient.

As for the former, let $f:[0,\Omega){\to}\{0\}$ and i be the identity of $[0,\Omega]$, where Ω is the first uncountable ordinal number. Then $f{\times}i$ is not closed. As for the latter, let X be the product of $[0,\Omega)$ with itself, and Y be the space obtained from X by identifying all points of the diagonal set of X, and let f be the quotient map of X onto Y. Then f is quasi-perfect, but it is not a bi-quotient map defined by E. Michael [8]. From E. Michael [8; Theorem 1.3], $f{\times}i_Z$ is not quotient for some paracompact space Z.

3. Applications of Theorem 1. K. Morita [9] has introduced the notion of M-spaces and proved a space X is an M-space if and only if there exist a metric space Y and a quasi-perfect map of X onto Y. Then, from Theorem 1, we have

Corollary 1. Let $\prod_{i=1}^{\infty} X_i$ satisfy the condition (C_1) , and each X_i be an M-space. Then $\prod_{i=1}^{\infty} X_i$ is an M-space.

From Theorem 1 and Lemma 2, we have

Corollary 2. Let $f_i: X_i \rightarrow Y_i \ (i=1,2,\cdots)$ be quasi-perfect maps. If each X_i satisfies the condition (C_0) , and Y_i is first countable for each $i \in N$, then $\prod_{i=1}^{\infty} f_i$ is a quasi-perfect map.

Corollary 3. Let $f_i: X_i \to Y_i$ $(i=1,2,\cdots)$ be closed, X_i normal, and $\prod_{i=1}^{\infty} X_i$ sequential. Then $\prod_{i=1}^{\infty} f_i$ is quotient if and only if $\prod_{i=1}^{\infty} Y_i$ is sequential.

Proof. The "only if" part is obvious, for the quotient of a sequential space is sequential.

"if"; Since $\prod_{i=1}^{\infty} Y_i$ is sequential and $C \subset \prod_{i=1}^{\infty} P_i(C)$ for every subset C of $\prod_{i=1}^{\infty} Y_i$, where P_i is the projection of $\prod_{i=1}^{\infty} Y_i$ onto Y_i , a subset F of $\prod_{i=1}^{\infty} Y_i$ is closed whenever $F \cap \prod_{i=1}^{\infty} C_i$ is closed for every subset $\prod_{i=1}^{\infty} C_i$ of $\prod_{i=1}^{\infty} Y_i$, where each C_i is a compact metric subset of Y_i . Hence, $\prod_{i=1}^{\infty} f_i$ is quotient whenever $\prod_{i=1}^{\infty} (f_i | f_i^{-1}(C_i))$ is quotient for every compact metric subset C_i of Y_i . We can then assume Y_i are first countable. From K. Morita and S. Hanai [9], there exists $g_i \colon A_i \to Y_i$ such that g_i is quasi-perfect, A_i is a closed subset of X_i . Since $\prod_{i=1}^{\infty} A_i$ satisfies the condition (C_1) , from Theorem 1, $\prod_{i=1}^{\infty} g_i = \prod_{i=1}^{\infty} f_i \cdot \prod_{i=1}^{\infty} i_{A_i}$ is quotient, which implies that $\prod_{i=1}^{\infty} f_i$ is quotient.

Remark. Even if $Y_1 \times Y_2$ is separable metric, $f_1 \times f_2$ need not be closed. Indeed, let $f: [0,1) \rightarrow \{0\}$ and i be the identity of [0,1]. Then $f \times i$ is not closed.

Now, we consider the product of closed map.

Lemma 3. Let $f_i: X_i \rightarrow Y_i$ (i=1,2) be closed maps, Y_i nondiscrete, sequential spaces, and $f_1 \times f_2$ closed. Then f_1 and f_2 are quasiperfect maps.

Proof. Since Y_1 is a non-discrete sequential space, there exists a point y_1 which, considered as a subset, is not open in some metric sub-

set C of Y_1 . As $f_1 \times f_2$ is closed, $(f_1|f_1^{-1}(C)) \times f_2$ is also closed. Since $f_1^{-1}(y_1)$ is a G_5 -set of $f_1^{-1}(C)$, from the proof given by T. Ishii [6; Theorem 2.3], we see that if we suppose $f_2^{-1}(y_2)$ is not countably compact for some point y_2 of Y_2 , then $(f_1|f_1^{-1}(C)) \times f_2$ is not closed. This is impossible. Therefore $f_2^{-1}(y_2)$ is countably compact for each point y_2 of Y_2 . Since f_2 is closed, f_2 is a quasi-perfect map. Similarly, f_1 is a quasi-perfect map.

From Theorem 1 and Lemma 3, we have

Theorem 2. Let $f_i: X \rightarrow Y_i$ $(i=1,2,\cdots)$ be closed maps, Y_i non-discrete spaces, $\prod_{i=1}^{\infty} Y_i$ a sequential space, and $\prod_{i=1}^{\infty} X_i$ satisfy the condition (C_1) . Then the following properties are equivalent.

- (a) $\prod_{i=1}^{\infty} f_i$ is a closed map.
- (b) $\prod_{i=1}^{\infty} f_i$ is a quasi-perfect map.
- (c) Each f_i is a quasi-perfect map.

Theorem 3. Let $f_i: X_i \rightarrow Y_i$ (i=1,2) be closed maps, X_i sequential M-spaces, and Y_i non-discrete, normal spaces. Then $f_1 \times f_2$ is closed if and only if f_1 and f_2 are quasi-perfect maps.

Proof. The "only if" part follows from Lemma 3.

"if"; From K. Morita [11; Theorem 2.2], Y_i are M-spaces. While, Y_i are sequential. Hence $Y_1 \times Y_2$ is sequential by [12; Corollary 2.3]. Consequently, $f_1 \times f_2$ is a quasi-perfect map by Theorem 1.

References

- [1] P. Bacon: The compactness of countably compact spaces. Pacific. J. Math., 32, 587-592 (1970).
- [2] T. Chiba: On q-spaces. Proc. Japan Acad., 45, 453-456 (1969).
- [3] J. Dugundji: Topology. Allyn and Bacon Inc. Boston (1967).
- [4] S. P. Franklin: Spaces in which sequences suffice. Fund. Math., 57, 107-114 (1965).
- [5] S. Hanai: Inverse images of closed mappings. I. Proc. Japan Acad., 37, 298-301 (1961).
- [6] T. Ishii: On product spaces and product mappings. J. Math. Soc. Japan, 18, 166-181 (1966).
- [7] E. Michael: A note on closed maps and compact sets. Israel. J. Math., 2, 173-176 (1964).
- [8] —: Bi-quotient maps and cartesian products of quotient maps. Ann. Inst. Fourier, Grenoble., 18 (2), 287-302 (1968).
- [9] K. Morita and S. Hanai: Closed mappings and metric spaces. Proc. Japan Acad., 32, 10-14 (1956).
- [10] K. Morita: Products of normal spaces with metric spaces. Math. Annalen., 154, 365-382 (1964).
- [11] —: Some properties of M-spaces. Proc. Japan Acad., 43, 869-872 (1967).
- [12] Y. Tanaka: On quasi-k-spaces. Proc. Japan Acad., 46, 1074-1079 (1970).