54. Functional Dimension of Tensor Product

By Shigeo Takenaka
(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1971)

§ 1. Introduction. The purpose of this paper is to give a proof to the fact that the functional dimension of the tensor product of two topological vetcor spaces is equal to the sum of their functional dimensions.
A. N. Kolmogorov [1] showed that the asymptotic behavior of number of elements of a minimal ε-net of a totally bounded subset in a topological vector space plays the role of dimension of the space. He [2] also introduced the notions of the approximative dimension and the functional dimension of topological vector spaces. The functional dimension is not trivial for σ-Hilbert nuclear spaces as is shown in I. M. Gel'fand's book [3].

In this paper we modify the definition of the functional dimension d_{f} of σ-Hilbert nuclear spaces to the number which is equal to the functional dimension (defined by Kolmogorov) minus 1, and we prove the following theorem:

Theorem. Let E_{1} and E_{2} be σ-Hilbert nuclear spaces. Then

$$
d_{f}\left(E_{1} \otimes E_{2}\right)=d_{f}\left(E_{1}\right)+d_{f}\left(E_{2}\right) .
$$

The author of the present paper expresses his thanks to Professors H. Yoshizawa and N. Tatsuuma for their discussions on this problem.
§2. Notations. We follow notations used by Kolmogorov [4]. Let E be a topological vector space, K be a totally bounded subset of E and S be its convex absorbing and barrelled neighbourhood of 0 in E. Then we call ε-entropy $H_{s}(S, K)$ of K (with respect to S) the infimum of logarithm of number of ε-nets of K (with respect to S); that is,
$H_{s}(S, K)=\inf \{\log (\# N) ; N \subset E, \forall k \in K, \exists n \in N, k \in n+\varepsilon S\}$.
We use the following notations for infinitesimals: $f(x) \geqslant g(x)$ means $\lim _{x \rightarrow \infty} g(x) / f(x)<+\infty ; f(x) \asymp g(x)$ means $f(x) \preccurlyeq g(x)$ and $f(x) \succcurlyeq g(x) ; f(x)$ $=\Omega(g(x))$ means $\lim _{x \rightarrow \infty}(f(x))^{n} / g(x)=0$.

In this paper the notation log stands for the logarithm with respect to the base 2.
§3. Theorem of Mityagin and σ-Hilbert nuclear spaces. We define as follows: The set \mathcal{E} is called $\left\{a_{n}\right\}$-ellipsoid when $\mathcal{E}=\left\{\left(\xi_{n}\right) \in\left(l^{2}\right)\right.$; $\left.\sum_{n}\left|\xi_{n} a_{n}\right|^{2} \leqq 1\right\}$, where $\left\{a_{n}\right\}$ is a monotonous increasing series of such numbers a_{n} that $\alpha_{n} \geqq 1$ and $\lim a_{n}=\infty$; the function $m(t)$ is defined by the formula $m(t)=\sup \left\{n ; a_{n} \leqq t\right\}$; let S be the unit ball in $\left(l^{2}\right)$.

Then the following theorem holds.
Theorem A (Mityagin [5]). If \mathcal{E} is an $\left\{a_{n}\right\}$-ellipsoid, then

$$
m\left(\frac{2}{\varepsilon}\right) \log \frac{4 e}{\varepsilon} \geqq H_{s}(S, \mathcal{E}) \geqq \log (\mathrm{e}) \int_{1}^{1 / 2 \varepsilon} \frac{m(t)}{t} d t
$$

Now let

$$
\gamma(\mathcal{E})=\lim _{\varepsilon \rightarrow 0} \frac{\left.\log H_{e}(S, \mathcal{E})\right)}{\log \log \frac{1}{\varepsilon}}-1
$$

then immediately from Theorem A we get
Proposition 1. For sufficiently small positive ε,

$$
\frac{\log \left(m\left(\frac{2}{\varepsilon}\right)\right)}{\log \log \frac{1}{\varepsilon}} \succcurlyeq \gamma(\mathcal{E}) \succcurlyeq \frac{\log \left(\int_{1}^{1 / 2 \varepsilon} m(t) \frac{d t}{t}\right)}{\log \log \frac{1}{\varepsilon}}-1
$$

Theorem B (Gel'fand [3]). Let E be a σ-Hilbert space and $U_{n}=\left\{x \in E ; p_{n}(x) \leqq 1\right\}$, where p_{n} are its countable norms, then E is nuclear if and only if

$$
\sup _{m} \inf _{n} \lim _{\varepsilon \rightarrow 0} \frac{\log H_{s}\left(U_{m}, U_{n}\right)}{\log \frac{1}{\varepsilon}}=0
$$

Following Kolmogorov [4] we define functional dimension $d_{f}(E)$ of a Frechét space E as follows:

$$
d_{f}(E)=\sup _{U} \inf _{V} \lim _{\varepsilon \rightarrow 0} \frac{\log H_{s}(U, V)}{\log \log \frac{1}{\varepsilon}}-1
$$

where U, V are convex barrelled and absorbing neighbourhood of 0 of E.
From Theorem B, we can consider that this functional dimension plays the role of dimensionality of σ-Hilbert spaces. Clearly, the tensor product of two σ-Hilbert (nuclear) spaces is also a σ-Hilbert (nuclear) space. In the following sections we shall show that the tensor product of two σ-Hilbert spaces with finite functional dimension has also finite functional dimension.
§4. The function $\boldsymbol{m}(\boldsymbol{t})$ of an ellipsoid with finite γ. Let E be a σ-Hilbert nuclear space and p_{n} be its norms, E_{n} be the completion of E with respect to p_{n}. In $E_{n}, U_{m}=\left\{p_{m}(x) \leqq 1\right\}$ is an ellipsoid if $m>n$. If E has finite functional dimension, for arbitrary n there exists m such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{\log H_{\bullet}\left(U_{n}, U_{m}\right)}{\log \log \frac{1}{\varepsilon}}<\infty
$$

We shall characterize an ellipsoid of this type by the growth of $m(t)$.

Proposition 2. Let \mathcal{E} be an ellipsoid and $m(t)$ be the corresponding function defined in §3. If $\gamma(\mathcal{E})=\beta$, then

$$
m\left(\frac{1}{\varepsilon}\right) \asymp\left(\log \frac{1}{\varepsilon}\right)^{\beta}\left(1+\Omega\left(\log \frac{1}{\varepsilon}\right)\right)
$$

Proof. By Proposition 1, we have

$$
\begin{gathered}
m\left(\frac{2}{\varepsilon}\right) \succcurlyeq\left(\log \frac{1}{\varepsilon}\right)^{\beta}\left(1+\Omega\left(\log \frac{1}{\varepsilon}\right)\right), \\
\int_{1}^{1 / 2 \varepsilon} \frac{m(t)}{t} d t \preccurlyeq\left(\log \frac{1}{\varepsilon}\right)^{\beta+1}\left(1+\Omega\left(\log \frac{1}{\varepsilon}\right)\right) .
\end{gathered}
$$

Now put, for positive α,

$$
m\left(\frac{2}{\varepsilon}\right) \asymp\left(\log \frac{1}{\varepsilon}\right)^{\beta+\alpha+1}\left(1+\Omega\left(\log \frac{1}{\varepsilon}\right)\right) ;
$$

then $\int_{1}^{1 / 2 \varepsilon} \frac{m(t)}{t} d t \asymp\left(\log \frac{1}{\varepsilon}\right)^{\beta+\alpha+1}\left(1+\Omega\left(\log \frac{1}{\varepsilon}\right)\right)$.
Therefore $\alpha=0$. And we have

$$
m\left(\frac{1}{\varepsilon}\right) \asymp\left(\log \frac{1}{\varepsilon}\right)^{\beta}\left(1+\Omega\left(\log \frac{1}{\varepsilon}\right)\right)
$$

Q.E.D.
§5. Tensor product of two ellipsoids and its $\boldsymbol{m}(t)$. Let \mathscr{K}_{1} and \mathscr{S}_{2} be Hilbert spaces, and $\mathcal{E}_{1}=\left\{\sum_{n}\left|a_{n} \xi_{n}\right|^{2} \leqq 1\right\}$ and $\mathcal{E}_{2}=\left\{\sum_{n}\left|b_{n} \eta_{n}\right|^{2} \leqq 1\right\}$ be ellipsoids in \mathscr{S}_{1} and \mathscr{S}_{2}, respectively. Then $\mathcal{E}=\mathcal{E}_{1} \otimes \mathcal{E}_{2}$ is also an $\left\{c_{n m}\right\}$ ellipsoid in $\mathscr{S}_{1} \otimes \mathscr{S}_{2}$, where $c_{n m}=a_{n} b_{m}$. Let $m_{1}(t)$ and $m_{2}(t)$ be the functions corresponding to \mathcal{E}_{1} and \mathcal{E}_{2} respectively, and suppose
and

$$
\begin{aligned}
& m_{1}(t) \asymp(\log t)^{\alpha}(1+\Omega(\log t)) \\
& m_{2}(t) \asymp(\log t)^{\beta}(1+\Omega(\log t))
\end{aligned}
$$

Then $\frac{d m_{1}(t)}{d t} \Delta t$ and $\frac{d m_{2}(t)}{d t} \Delta t$ are numbers of axes whose lengths fall between t and $t+\Delta t$.

Now we estimate $m(t)$ of ε. We have

$$
\int_{1}^{t-\Delta} \int_{1}^{(t-4) / x} m_{1}^{\prime}(x) m_{2}^{\prime}(y) d x d y \preccurlyeq m(t) \preccurlyeq \int_{1}^{t+\Delta} \int_{1}^{(t+\Delta) / x} m_{1}^{\prime}(x) m_{2}^{\prime}(y) d x d y
$$

where $0 \leqq \Delta \ll t$;

$$
\begin{aligned}
m(t) & \preccurlyeq \int_{1}^{t+\Delta} \alpha(\log x)^{\alpha-1}(1+\Omega(\log x))(\log (t+\Delta)-\log x)^{\beta} \frac{d x}{x} \\
& \preccurlyeq \int_{1}^{t+\Delta} \alpha(\log (t+\Delta))^{\beta}(\log x)^{\alpha-1}(1+\Omega(\log t)) \frac{d x}{x} \\
& \preccurlyeq(\log (t+\Delta))^{\alpha+\beta}(1+\Omega(\log t)) \\
& \asymp(\log t)^{\alpha+\beta}(1+\Omega(\log t))
\end{aligned}
$$

And we have

$$
\begin{aligned}
m(t) & \succcurlyeq \int_{1}^{\sqrt{t-\Delta}} \alpha(\log t)^{\alpha-1}(1+\Omega(\log t)) \frac{\log (t-\Delta)}{2} \frac{d x}{x} \\
& \asymp \frac{1}{2^{\alpha+\beta}}(\log (t-\Delta))^{\alpha+\beta}(1+\Omega(\log t))
\end{aligned}
$$

$$
\asymp(\log t)^{\alpha+\beta}(1+\Omega(\log t)) .
$$

Q.E.D.

Thus we have
Proposition 3. $m(t) \asymp m_{1}(t) \cdot m_{2}(t)$.
§6. Functional dimension of tensor product of nuclear spaces.
Theorem. Let E and F be σ-Hilbert nuclear spaces. Then

$$
d_{f}(E \otimes F)=d_{f}(E)+d_{f}(F) .
$$

Proof. Let $\left\{U_{i}\right\}$ and $\left\{V_{j}\right\}$ be fundamental neighbourhoods of E and F, respectively. Let
and

$$
\gamma_{n}^{m}=\lim _{\varepsilon \rightarrow 0} \frac{\log H_{e}\left(U_{m}, U_{n}\right)}{\log \log \frac{1}{\varepsilon}}-1
$$

$$
\widetilde{\gamma}_{n}^{m}=\lim _{s \rightarrow 0} \frac{\log H_{s}\left(V_{m}, V_{n}\right)}{\log \log \frac{1}{\varepsilon}}-1,
$$

then $\sup _{m} \inf _{n} \gamma_{n}^{m}=d_{f}(E)$ and $\sup _{m} \inf _{n} \widetilde{\gamma}_{n}^{m}=d_{f}(F)$. Put

$$
\gamma_{n c}^{m k}=\lim _{\varepsilon \rightarrow 0} \frac{\log _{s} H_{s}^{n}\left(U_{m} \otimes V_{k}, U_{m} \otimes V_{1}\right)}{\log \log \frac{1}{\varepsilon}}-1
$$

then $\sup _{m, k} \inf _{n, l} \gamma_{n l}^{m k}=d_{f}(E \otimes F)$. By Proposition 3, $\gamma_{n l}^{m k}=\gamma_{n}^{m}+\widetilde{\gamma}_{l}^{k}$. Hence we get

$$
\begin{aligned}
d_{f}(E \otimes F) & =\sup _{m, k} \inf _{n, l} \gamma_{n l}^{m k}=\sup _{m} \inf _{n} \gamma_{n}^{m}+\sup _{k} \inf _{l} \tilde{\gamma}_{l}^{k} \\
& =d_{f}(E)+d_{f}(F) .
\end{aligned} \quad \text { Q.E.D. }
$$

References

[1] A. N. Kolmogorov: D.A.N., 108, 385-388 (1956).
[2] --: D.A.N., 120, 239-241 (1958).
[3] I. M. Gel'fand and N. Ya. Vilenkin: Generalized Functions, Vol. 4 (in Russian), Moscow (1961).
[4] A. N. Kolmogorov and V. M. Thihomirov: Y.M.N., 14-2, 3-86 (1959).
[5] B. S. Mityagin: Y.M.N., 16-4, 63-132 (1961).

