198. Continuity and Modularity of the Lattice of Closed Subspaces of a Locally Convex Space

By Shûichirô MAEDA Ehime University, Matsuyama

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1971)

1. Introduction. The set of all subspaces of a vector space forms an upper continuous modular atomistic lattice, ordered by set-inclusion. While the set $L_c(E)$ of all closed subspaces of a locally convex space Eforms a complete DAC-lattice which is, in general, neither upper continuous nor modular (cf. [3], Chapter VII). The main purpose of this paper is to find some conditions on E under each of which $L_c(E)$ becomes upper continuous, lower continuous and modular respectively. Our main results are as follows: (1) $L_c(E)$ is upper continuous if and only if every subspace of E is closed, (2) $L_c(E)$ is lower continuous if and only if E is a minimal space, (3) in case E is metrisable, $L_c(E)$ is modular if and only if E is a minimal space. The last result is a generalization of a theorem in Mackey [2].

2. Continuity and modularity in DAC-lattices. A lattice L is called *upper continuous* when $a_s \uparrow a$ implies $a_s \land b \uparrow a \land b$ and called *lower continuous* when $a_s \downarrow a$ implies $a_s \lor b \downarrow a \lor b$ ([3], Definition 2.14). We write (a, b)M (resp. $(a, b)M^*$) when the pair (a, b) is modular (resp. dual-modular)([3], Definition 1.1).

Lemma 1. Let a be an element of a complete lattice L. If the interval $L[a, 1] = \{x \in L; a \leq x \leq 1\}$ is upper continuous then for any $b \in L$ there exists a maximal element b_1 such that $b_1 \leq b$ and $(b_1, a)M^*$.

An atomistic lattice L with the covering property is called an *AC-lattice* ([3], Definition 8.7). A lattice L with 0 and 1 is called a *DAC-lattice* when both L and its dual are AC-lattices ([3], Definition 27.1). In a DAC-lattice, (a, b)M and (b, a)M are equivalent and so are $(a, b)M^*$ and $(b, a)M^*$ ([3], Theorem 27.6).

Theorem 1. Let L be a complete DAC-lattice and let $a \in L$. If either L[a, 1] is upper continuous or L[0, a] is lower continuous, then (a, x)M and $(a, x)M^*$ hold for every $x \in L$.

Corollary. If a complete DAC-lattice L is either upper or lower continuous then L is modular.

Lemma 2. Let L be a complete AC-lattice and assume that there exists a sequence of atoms p_n such that $1 = \bigvee(p_n; 1 \leq n < \infty)$. If L is sequentially upper continuous $(a_n \uparrow a \text{ implies } a_n \land b \uparrow a \land b)$ then it is upper continuous.

3. Continuity of the lattice of closed subspaces of a locally convex space. Let E be a locally convex space. (Here locally convex spaces are always Hausdorff.) The set $L_c(E)$ of all closed subspaces of E forms an irreducible complete DAC-lattice, ordered by set-inclusion ([3], Theorem 31.10). We denote by E' the vector space of all continuous linear forms on E and by E^* the space of all linear forms.

Theorem 2. Let E be a locally convex space. The following statements are equivalent.

(α) $L_c(E)$ is upper continuous.

(β) Every subspace of E is closed.

 $(\gamma) \quad E' = E^*.$

(δ) The topology of E is finer than or equal to $\sigma(E, E^*)$.

Theorem 3. Let E be a locally convex space. The following statements are equivalent.

(α) $L_c(E)$ is lower continuous.

 $(\beta) \quad E = E'^*.$

(γ) There exists no strictly coarser locally convex topology on E. In this case, E is called a minimal space ([5], p. 191).

(δ) E is isomorphic with the product space K^I of one-dimensional spaces.

Remark. By [1], Chap. IV, § 1, Exercise 13 c), if a subspace of a locally convex space E is minimal then it is closed in E. Moreover it can be shown (see Exercise 13 f)) that

(1) if a subspace A of E is minimal then the linear sum A + X is closed for every closed subspace X of E, and that

(2) if subspaces A and B are minimal then so is A+B.

By [3], Theorem 31.10, A + X is closed if and only if $(A, X)M^*$ in $L_c(E)$, and by Theorem 3, A is minimal if and only if the interval $\{X \in L_c(E); X \leq A\}$ of $L_c(E)$ is lower continuous. Therefore, Theorem 1 in § 2 is a generalization of the statement (1). On the other hand, it follows from (2) that in the lattice $L_c(E)$ the set of all minimal subspaces forms a greatest lower continuous ideal.

4. Modularity of the lattice of closed subspaces. It follows from Theorems 2 and 3 and Corollary of Theorem 1 that $L_c(E)$ is modular if either $E'=E^*$ or $E=E'^*$. When E is infinite-dimensional and metrisable, it does not occur that $E'=E^*$ ([5], p. 148), and moreover we shall show that $E=E'^*$ is the only case that $L_c(E)$ is modular.

Lemma 3. Let E be a metrisable locally convex space. If for some sequence of elements $A_n \in L_c(E)$ such that $A_n \downarrow \{0\}$ there exists a neighborhood U of 0 such that $A_n \subset U$ for every n, then $L_c(E)$ is not modular.

Lemma 4. Let E be a metrisable locally convex space. If $L_c(E)$ is modular then it is sequentially lower continuous.

Suppl.]

Lemma 5. Let E be a separable metrisable locally convex space. If $L_c(E)$ is sequentially lower continuous then it is lower continuous.

Lemma 6. Let E be a locally convex space such that every separable closed subspace of E is metrisable. If $L_c(E)$ is sequentially lower continuous then the completion \hat{E} of E is minimal.

Theorem 4. Let E be a metrisable locally convex space. The following statements are equivalent.

(α) $L_c(E)$ is modular.

 (β) $L_c(E)$ is lower continuous.

(γ) E is minimal (E is isomorphic to K^{I} where I is countable).

This theorem is a generalization of Mackey [2], Theorem III-15. Moreover, this theorem implies the following result which is a generalization of [2], Theorem III-14 and is closely related to Martineau's result in [4]. If E is a metrisable locally convex space which is not minimal, then there exist two closed subspaces A and B of E such that A+B is not closed.

In this paper, the proofs are omitted. The details will be stated in another paper.

References

- [1] N. Bourbaki: Espaces Vectoriels Topologiques. Paris (1955).
- [2] G. W. Mackey: On infinite-dimensional linear spaces. Trans. Amer. Math. Soc., 57, 155-207 (1945).
- [3] F. Maeda and S. Maeda: Theory of Symmetric Lattices. Berlin (1970).
- [4] A. Martineau: Sur une propriété caractéristique d'un produit de droites. Arch. Math., **11**, 423-426 (1960).
- [5] H. H. Schaefer: Topological Vector Spaces. New York (1966).