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196. The Theory of Nuclear Spaces Treated
by the Method of Ranked Space. IV

By Yasujir6 NAGAKURA
Science University of Tokyo

(Comm. by Kinjir.5 KUNUGI, M. $. A., June 12, 1971)

5. The completion of the linear ranked space , (2).
Lemma 20. Le 0 be he subse of consisting of hose equiva-

lence classes which contain an R-Cauchy sequence {g} for which gl--g2

The mapping T of # onto 0, which maps g e to the class con-
taining the sequence consisting of a single element g, is bijective and
we have g e V, (0, r, m) if and only if e #, (0, r, m).

Proof. Let g and f be two different elements in . Then there
exists no class containing two sequences {g} and {f} with g--g, fn--f
for every n.

Because if it is not true, {g} and {f} are equivalent. And then
there exists a fundamental sequence of neighbourhoods {V (0, r,, m,)}
such that g,--f e V, (0, r,, m,) for every i, that is, g--f V(O, r,, m)
for every i. This implies g=f by Lemma 8 in [4].

Next, we shall prove that g e V, (0, r, m) implies e , (0, r, m).
Since we have V, (0, 1, m)- U, (0, e,, m) by the paper [4], we obtain
V, (0, r, m)--U, (0, re,, m). Hence we have

2,_,(g, ,),_ <rs.
Then there exists some number r’, 0r’r such that

Consequently we obtain V (0, r’, m). By Definition g, this shows
0 (0, r, .

Conversely, if we have 0 (0, , m), there exist some number
0<’< and some integer N such that

And then we obtain g V (0, f, m).
Theorem Z. The et o i gee i .
Proof. Let 0 be any element in . And let an R-Cauehy sequence

{g} belong to 0. Then there exists a fundamental sequence of neigh-
bourhoods {g(0, , m)}, such that the relations and mi imply

9--g V (0, f, m).
Let 0 be the class containing the retitive sequence n, .q,,
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Then we have e 0. Since by Lemma 20 we have that the rela-
tions n>=i and m>=i imply -- e ?r (0, r, m), the sequence {.0} in

0 is an R-Cauchy sequence.
On the other hand, since we have g--g e V (0, r, m) or m>=i,

we obtain 0-- e I? (0, 2r, m) for every i. Since {l? (0, 2r, m)} is
R

a fundamental sequence of neighbourhoods, we obtMn ----.
Definition 7. Let P, be a real valued function defined on the

linear ranked space such that
P,(g)--in r, where g e V (0, r, m).

Lemma 21. We have P,(g)= (2,_,/s)(g, k,ni)QPk,ni_
7i--

Proof. It is easily verified.
Lemma 22. The function P, is a semi-norm on
Lemma 2:. We have P,(g)=P,(g) if
Lemma 24. We have P,(g)>=P,,(g) if m’m.
Definition 8. Let /, be a real valued unction defined on the

linear ranked space such that/,(O)--inf r, where e I?(0, r, m).
Lemma 25. If an R-Cauchy sequence {g} belongs to , we have

/,()-lim P,(g).

Proof. Set briefly/,())-a. Then if ar, we have e I(0, r,
m). By Definition 5, there exist some number r’, 0r’r and some
integer N such that g e V(0, r’, m) or every n>=N. And then we have
P,(gn) <= r’ r. Since the sequence {g} is an R-Cauchy sequence, there
exists a undamental sequence of neighbourhoods, {V(0, r, m)}, such
that the relations k>=i and h>=i imply V(O, r, m) g--g.

On the other hand, there exists some integer ] such that V(0, r, m)_
V.(0, r, m). And then we have that the relations /c>__] and

imply IP,(g)--P,(g)<=P,(g--g)r. Hence {P,(g)} is a
Cauchy sequence o real numbers. Then limP,(gn) exists and we

have lim P,(g)__< a.

Conversely, if a r 0, we have d e l?(0, r, m). And hence for
every with Olr and every integer N, there exists some integer
kN such that g e V(0, l, m), that is, P,(g)>= 1.

Since {P,(g)} is a Cauchy sequence, it ollows limP,(g)>=l.

And hence we have lim P,(g) >= r. Consequently we obtain

lim P,(g)>__ a. This finishes the proo o the lemma.

Lemma 26. The function , is a semi-norm on .
Proof. It is evident.
Lemma 27. The quotient space /M,, where M,--{d

/,()-0}, is a finite dimensional space.
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Proof. Let be an element in , and let an R-Cauchy sequence {g}
belong to . Then there exists a fundamental sequence o neighbour-
hoods {V(O,r,m)} such that the relations h>=] and l>=] imply

V(0, rj, mj) g--g. And then the relations i and mm imply
V(O, r, m) g--gt or h, l]. Hence we have

k=l

and it follows
[(g, ,n)--(g, a,ni)<rj/,ni_,,ni, for lkm.

Then {(g, ,)} is a Cauchy sequence of real numbers, thus there ex-
ists some number a such that (g, ,)a h.

Now, we set (1/e)( 2,_,a,n_--(). Thus the mapping
k=l

F, o to () is a homomorphism of onto (,), where

(i,m)-- {5=,ni-l,ni(g, k,ni)k,ni-; g

Moreover we can easily verify P,(O)-P,(d<)). And hence
F, induces an isomorphism of /ker (F,) onto <,). Next, we
shall prove ker (F,)=M,. Because if d belongs to ker (F,), we
have ()--0. Then there exists an R-Cauchy sequence (g} belonging to
0 such that (g, ,)0 as n for every k--l, ..., m. And hence

we have P,(g)--(1/s) 2,_,(, p,)p,_ 0. It follows

,(0)-- 0, that is, 0 M,
Conversely if 0 belongs to M,, we have ,(0)--0. hen there

exists an R-Cauehy sequence {g} belonging to 0 such that lim P,(g)

=0. Hence we have (g,p,)0 as for -l,...,m. It fol-
lows 0-0.

Now, we shall define a norm on /
=inf,(f), where fo+M, and 0. hus we shall prove
II0+M, --P,(0). Because let f belong

Henee we have

Consequently we obtain
Theorem 3. A boded ifiite set
Proof. Let B be a bounded infinite set in . By the definition of

the boundness in linear ranked space (in [6]), there exist a fundamental
sequence of neighbourhoods {(0, r, m)} and numbers C(i= 1, 2,...)
such that C(O, , m)DB for every integer i.

And then the relation 0 B implies ,(0)Cr for every integer
i.

Cae I. Suppose B/M, where M-- {0 ,(0)-- 0}.
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I B/M is consisted of some finite element of the coset; B,, B,,
., B,(1), some coset B,() has to contain infinite elements in . Next,

suppose B,()/M, where M--{ e ; fi,() 0}. If B,()/M is con-
sisted of some finite element of the coset; B,,B,,.. ",B,n(), some
coset B,() has to contain infinite elements in . In general, suppose
that B,()/M+ (k-1,2, ...) has finite element of the coset, thus
B,() (k--1, 2,...) has infinite elements in .

And then we have B,()B,,()... B,().... If we take a
sequence {}c such that e B,() and# if k#h, then the se-
quence {} is a Cauchy sequence in with respect to every semi-norm
P, (i= 1, 2,...). Because for any )0 and any fr,, the relations
h] and k] imply fi,(--)--0, that is O-- e ? (0, , m).

On the other hand, for any neighbourhood in , (0, z, m), there
exists some integer ] such that (0, e, m) (0, e, m). And then
we have (0, , m) O--O for h] and k]. Consequently we as-
sert that the sequence {0} is an R-Cauchy sequence in and then there
exists a limiting element in .

Case II. Suppose that there exists some integer such that or
kl, B,()/M+ has finite element of the coset and B,()/M+ has
infinite elements o the coset. Let f belong to + Mt+ (with d e
in Bt,()/Mt+. Since we can select d’ in Mt+ such that f=+’, we
have #r,+,,+,(f) #r,+,,+() +,+1,+1(]) Pl +1,l+1() Cl +1’ +1"

And hence we have I[+M,+ItC,+,+. By Lemma 27,
is finite dimensional and then Bt,,()/Mt+ is bounded in the finite dimen-
sional spase. Thus there exists a Cauchy sequence {Bt+I,} of cosets
in Bt,,(t)/Mt+ with respect to norm of /Mt+. If we take a sequence
{,} such that 1, e Bt+, for every integer n, the sequence (d,} is a
Cauchy sequence with respect to #r,+,,,+, since we have r,+,+()

g+Mt+[by the proof of Lemma 27.
On the other hand, since we have

?,+(0,1, m,+) ?,+(0, 1,
it is clear that

Thus we obtain M, + M+.
Hence there cannot be two different elements ,, 1, with nm

in the same coset with respect to M+2. And then (,}/M,+2 has in-
finite elements of the coset and it is bounded in #/M+2. Hence there
exists a Cauchy sequence {2,) in (,} with respec to P,+,,+. We
proceed by induction, obtaining sequences (,}, each a subsequence
of its predecessor. The diagonal sequence (,) is then a Cauchy se-
quence in with respect to every ,,m" And then it has a limiting
element in $.
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Theorem 4. A bounded infinite set in the nuclear space is se-
quential compact.

Proof. Let B be a bounded infinite set in the nuclear space b.
And then there exist numbers C (i-1, 2,...) such that the relation
g e B implies

k=l

for every i.
And hence we have

sP,(g)-- 2,_,(g, ,),_ <C.
Now, let O be an element in , which contains an R-Cauehy sequence

{g} consisting of a single element g in . Then we have

fi,(O) P,(g) <C /
and hence we obtain

0 e ,(0, C/s,, m).
Consequently, {0}--{0; g e B} is a bounded infinite set in the linear

ranked space . Hence by Theorem 3, there exists an R-Cauchy sub-
sequence {0,} in {0}.

By Lemma 13 in [4], for any (0, s, m), there exists some integer

N such that the relations nN and mN imply 0--O e (0, s, m).
Since for every integer n, On is a equivalence class which contains

an R-Cauchy sequence consisting of a single element g,, then we have
g--g e V(O, s, m) by Lemma 20.

This shows that the sequence {gn}, is an R-Cauchy sequence in .
Hence by Lemma 4, the sequence {g}, is a Cauchy sequence in the

nuclear space.
Since the nuclear space is complete, the proof finishes.
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