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221. Note on the Asymptotic Normality of a Stochastic
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Tokyo Institute ot Technology

(Comm. by Kinjir5 KUNU(I, M.Z. )., Oct. 12, 1971)

1o In the present paper we are concerned with the continuous
analogue of the classical central limit theorem. The Lindeberg theo-
rem establishes necessary and sufficient conditions under which sums
o mutually independent random variables are asymptotically normally
distributed. We shall show that the normal convergence law of the
Lindeberg type holds or a stochastic process with independent incre-
ments, which is essentially the continuous parameter version of a se-
quence of consecutive sums o mutually independent random variables.
In some practical applications, it is o real importance to determine
limiting distributions or continuous parameter processes with inde-
pendent increments [1] [2].

2. Let {xt, t_>0} be a continuous parameter process with inde-
pendent increments which is not necessarily temporally homogeneous.
In what follows, we assume that x0--0 and that there are no fixed points
o discontinuity. As is well known [3], the characteristic unction of
xt has the form

E(e:)=e,),

Here re(t) is a continuous unction of t, v(t) is a non-negative, mono-
tone non-decreasing, and continuous unction o t, and t(du)

(grg) is a measure on (--, ){0} satisfying u({t} x d)O and

he following lemma can be verified directly from the formula (1).
Lemma 1. I N() i fiite, of eqiveet,

(3)

for all tO, then the expectation (t)--E(xt) and the variance a(t)
=Var (xt) are given by

(4) Z(t)=m(t) + u,(du), a(t)=v(t) + u’(du)"
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We now obtain a continuous analogue to the classical central limit
theorem.

Theorem 1. Let a(t) c for all t O. In order that for any
real x

{- t(15) p x (t)<z___,()__/_ e
(t)

as t, it is necessary and sucient that the Lindeberg type condition

( 6 ) I u.vt(du)_O,
a(t) il>()

be satisfied for every fixed e 0.
Proof. Defining (, t) by

we have from (1) and (4)

(8)

t---> OO

where

( 9 ) h(, U, t)--e*:u/*(t)- 1---iu
a(t) 2a(t)

The assertion (5) is thus equivalent to the statement that for all

(10) lira h(, u, t),(du)-O.

Suciency. It is easily shown that

,h(, u, t),= et/(t)- 1--ju + 2a(t)
g

6a(t)a(t)
(11) u uh(5, u, t) l< e/()-1- iu + <_

a(t) 2a(t) a(t)
Therefore,

I1f lul(du)+(12)

<tt3 uvt(du).6-+ a(t
The factor of
can be chosen arbitrarily small, so that the integral on the left side
tends to 0.
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(13)

(14)

Necessity. Taking the real part of (10), we get

2

By the inequalities
u uu < 1--cos <2,1--cos

a(t) 2a(t) a(t)

u2(du)
2a(t)J- 2a(t)

(15)

<2 (du)+o(1)< 2
>( _+o(1).

Dividing (lg) by /2 we see that

(16) 1 (d)<at) > -+o(1).

The left side is independent of while the right side can be made arbi-
trarily small by choosing sufficiently large. Hence the left side tends
to 0, which completes the proof.

Remark. Theorem 1 is simpler than the Lindeberg theorem or
sums of independent random variables, since in the continuous param-
eter case the condition that normalized summands are individually
negligible or infinitesimal [4] is automatically satisfied.

Corollary 1. If the process {xt} is homogeneous in time, then (5)
holds.

This is an immediate consequence of Theorem 1 with a(t)=ta(1)
and ,t(du) t,(du).

Corollary 2. Suppose that for some k 2

Then, the condition (6) is satisfied whenever

(s)
a(t

as to. (L]apunov’s sucient condition).
The proo proceeds as ollows

1 I u’(du) 1 I
(9)

e-a(t)
u

Theorem 2. If (6) holds for each fixed e>O and t{(-, )}0,
then a(t) as t.

Proof. Suppose that there exists a number a such that a(t) a

it follows that



992 M. HORI and T. FUJIMAGARI [Vol. 47,

for all . From (6) we find

[
Since >0 is arbitrary and t(du) iS non-decreasing in t, it can be con-
eluded that

(21) [:u,,(du) 0,

which leads to ,t{(--, )}0. This is a contradiction.
3. We next consider a continuous parameter process [Xt,

with independent increments which has no fixed points o discontinui-
ty. Note that X0 is not necessarily required to be zero. However, the
characteristic unction of the random variable xt:Xt--X may be
written in the same orm as (1).

Lemma 2. Let E(x) and E(X) be finite, and put a(t)-Var (xt)
and S(t)=Var (Xt). Then S(t) as t, if and only if a(t).
In this case, S(t)a(t).

Proof. Let us consider the covariances Coy (X0, xt)and Coy (X0,
XJ. It is evident that

S(0) S(t) + a(t) 2 Cov (X0, xt)2S(0)z(t),
(22)

S(O) + S(t)-a(t)]=2 ICov (X0, Xt)I2S(O)S(t),
whence either a(t) or S(t) implies a(t)/S(t)l.

Hereafter we shall add the ollowing assumption: X0 is independ-
ent o xt=Xt-Xo or all t>0; namely, {Xt} orms a spatially homo-
geneous Markov process.

Theorem 3. Suppose that S(t)< and S(t) as t, and put
M(t)=E(Xt). Then for every fixed x,

S(t)
if and only if for any given 0

(24)

Proof.

(25)

1 u,(du)O, t.
S(t) I1>

We start from the obvious equality

Xt M(t) xt [(t) a(t) + Xo--M(0)
S(t) a(t) S(t) S(t)

Lemma 2 means that the actor a(t)/S(t) in (25) tends to
From the independence of xt and X0, therefore, it ollows that the as-
sertion (23) is equivalent to (5). On the other hand, the two conditions
(6) and (24) are equivalent to each other, because for large t and any

(26)
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The validity of this theorem is thus guaranteed by Theorem 1.
Theorem 4. (a) In the case where vt{(--c, c)}0, the condition

(24) implies that S(t)--. as
(b) Suppose that (23) holds and limS(t)c. Then vt{(-c, c)}

_=0; in other words, Xt is continuous in with probability one. Fur-
thermore, Xo has a normal distribution. *)

(c) If rt{(-c, c)}-0 and Xo is normally distributed, then the
statement (23) is true.

Proof. The proof o (a) is exactly similar to that of Theorem 2.
The assertion (c) requires no comment. To prove (b) we consider the
characteristic function
(27)
The left side converges to exp [--(B/A)./2], where A--lim

and B--lira S(t) c. In addition, the second actor on he right con-

verges to E[exp(i(Xo-M(O)}/A)]. Hence he random variable
(xt-- f(t)}/a(t) converges in law as t-c. According to Cramr-Lvy’s
theorem [5], the assertion (5) holds and X0 has a normal distribution,
so that t((-, c)}=0 by Theorem I and Theorem 2. The proo is
accomplished.

Acknowledgement. The authors are much indebted to Prof. K.
Sato or suggesting the proof o Theorem 2.
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