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213. On the Structure of Hyperfunctions
with Compact Supports

By Akira KANEKO*)

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J.A., Sept. 13, 1971)

We discuss an analogue of the classical structure theorem of dis-
tributions on a compact set. We mainly treat the case of one variable
(n----1). The case of several variables with some applications will be
discussed by a somewhat different method in a paper under prepara-
tion (see [3]).

Theorem 1. Let u be a hyperfunction of one variable with sup-
port in the interval K-[a, b]. Then u can be expressed as follows:

u--Jl(D)[l / J2(D)[2 / J3(D)IA,
where l, i=1, 2, 3 are measures with supports in [a, b], and J(D),
i-- 1, 2, 3 are local operators with constant coecients. (Local opera-
tors with constant coefficients are differential operators of infinite order
in the theory of hyperunctions see, e.g., [1], 2. On the operation of
J(D), the meusures/ are considered as hyperfunctions.)

We prepare two lemmas. Let _[K] denote the space hyper-
2unctions with support in K. Let H() denote the supporting unc-
tion sup Re (x, i} o K (i= /--1).

Lemma 2. The Fourier transform () of u e _[K] is an entire

function which satisfies the following growth condition:
I()1< c exp (ll/(ll) +H()),

where (r) is a monotonely increasing function of r>/O and satisfies
(0)=1, (r)-c when

Proof. The following estimate for () is well known:
1()14C, exp (e I)I+H()) for any

Put
(r)=sup I() exp (--HK())I and (r)=r/log (e+(r)).

From the above estimates it is easily seen that (r)-.c when r-c.
Thus the function (r)=max {inf (r), 1} serves our purpose, q.e.d.

Lemma 3. Assume that the function (r) has the properties
mentioned in Lemma 2. Then for any prescribed constants A, C, c, c2
there exists a local operator J(D) whose Fourier transform J() satis-

fies the following estimate from below:
IJ()IC exp (A I1/(11)) for IIm l<c +c2 IRe

:’’) Partially supported by Ffijukai.
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Such a function J() can be given by the infinite product

J()=c’ [I += (m(m))
We omit the precise estimate (see [1], the proof o Lemma 6).

Remark. The J(D) in this lemma is an elliptic local operator (see
[2]).

Proof of Theorem 1. For given u, choose a function (r) and a
local operator J(D) as in the lemmas above, and put J()-(+ i)J().
Consider a Fourier hyperunction U (see [2]) whose defining unction
is () or Im)0 and 0 or Im (0. (Indeed U is the Fourier trans-
orm of the hyperunction u considered as a Fourier hyperunction.)
U is divisible by J(). In act, by the estimate o J() 2rom below,
there exists a Fourier hyperunction V whose defining unction is
V/()=()/J() for Im >0 and V_()--0 for Im 0. Thus J()V

U. The inverse Fourier transform I? of V is again a Fourier hyper-
function and satisfies (see the general theory of [2])

J(D)-- /--u.
On the other hand, the defining unction V of V has the estimate

[V()I<C/(I/I for IIm I<C.
Therefore the boundary values of those holomorphic functions define
indeed an element of L2(R). The inverse Fourier transform l? is also
an element of L(R).

Let/ be the function in L(R) which is equal to I? on K and 0
otherwise. Then the hyperfunction u--J(D) has support only at the
two points a, b. Thus by the structure theorem of hyperfunctions
whose support is only one point, we have

u--JI(D)I--J2(D)[ - J3(D)/23,
where / (respectively/3) is the Dirac measure at the point a (respec-
tively at b). Thus u--J(D)/ + J2(D)/2 + J3(D)/3. q.e.d.

Remark. The same proof employing the theory of Fourier hyper-
functions shows that also in the case of several variables each hyper-
function is locally equal to an infinite derivative of an L function.

Remark. In analogy with the case of distributions one may expect
that u e_[K] can be expressed by two terms" u=J(D)I+J(D)[2.
But this cannot be seen from the above method of proof. We can ex-
plain this difficulty in the following way" Since the differential oper-
ator of infinite order is not in general simultaneously elliptic and hyper-
bolic, the regulriztion usually causes the propagation of support to
the whole space. It is conjectured by Sato, however, that we may
always reduce the expression to two terms.

Theorem 4. Let {u}=[K] be a sequence which converges to
u e _[K] in the usual (Frgchet space)topology of _[K]. Then, there
is a local operator J(D) with constant coefficients and a sequence of
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functions {f}=cL(R) which converges to f e L(R), such that J(D)f
u, J(D)f u.

Proof. It is easy to see that the estimates of the type in Lemma 2
hold for elements in a compact subset of _[K] with a common function
(r). Let J() be the entire infra-exponential function constructed
in Lemma 3 with the ( corresponding to the compact subset
{,, k= 1, 2, } of _[K]. As in the proof of Theorem 1, the sequence
{()/J()( + i)}L- is a bounded subset of L(R). On the other hand,
() exp (-- I converges or any e0 uniformly on the real line by
the assumption. Thus {()/J($)( + i)}L-1 converges to t()/J()
($+i) uniformly on every compact subset of R. Therefore t()/J()
($ + i) converges to ($)/J($)($ + i) in L(R). Applying the inverse

Fourier transform, we obtain the desired f, f, and J(D)--J(D)(D + i).
q.e.d.

For a compact set KRn, (K) denotes the space of real analytic
functions on a neighborhood of K. This is a DFS (dual Frchet
Schwartz) space with its natural inductive limit topology.

Lemma 5. The following are equivalent.
1) The weak topology (a(A(K), B[K])) of (K) relative to the

pairing with .[K] is weaker than the topology of (K) defined by the
seminorms Ilullz-sup IJ(D)u(x)l, where J(D) runs over the local opera-

xK

tors with constant coefficients. (In the sequel the space (K) endowed
with the latter topology is denoted by z(K).)

2) Every hyperfunction u e _[K] has an expression of the form
u-J(D)l +... +J(D)/, where / are measures with support in K.

Proof. 1)2). Take u e _[K] arbitrarily. By the assumption we
have the following inequality

If, u}lsup IJ(D)f(x)l+ +sup IJN(D)f(x) I, f e (K),
xK xK

where J(D), i--1,...,N are some local operators. Therefore u is a
linear functional on the subspace

f e ,fit(K) C(K)N,

and u is continuous for the usual topology of C(K) defined by the
supemum norm on K. Hence by the Hahn-Banach theorem u can be
continuously extended to the whole C(K) and by the Riesz theorem it
can be expressed as follows"

=f,J(--D)I+... +J(--D)g}.
Thus
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u=J(--D)/ +... +J(-D)I,
where/ are measures with support in K. q.e.d.

2)1) is easy.
From this lemma and Theorem 1 we have
Corollary 6. Let K= [a, bier1. Then the assertion 1) of Lemma

5 holds.
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