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210. Topological Completions and Realcompactifications

By Takesi ISlWATA

(Comm. by Kinjir6 KUNUGI, M. ft. A., Sept. 13, 1971)

Throughout this paper by a space we shall mean a completely
regular T-space. The completion of a given space X with respect to
its finest uniformity is called the topological completion of X, according
to Morita [5], denoted by/X. The following question has been raised
by Comfort [1]: Is there a locally compact space with a realcompacti-
ficatio which is not even a k-space? An ingenious example has been
suggested by the referee of the above paper, and it is described in [1].
The cardinality of the space in this example is 2. Negrepontis [7]
constructed further a locally compact separable space of cardinality ,
assuming the continuum hypothesis, whose realcompactification is a
LindelSf non k-space. In l, concerning this question, we shall point
out the fact that if X is a normal space satisfying the condition (cc-c)
and if Y is a subspace of oX such thatXY, then Y is not a k-space
(Theorem 1.1 below) and moreover investigate the relation between/X
and Hewitt realcompactification oX of a given space X concerning local
compactness (Theorem 1.5 below). In 2, firstly we shall prove that
the relation /(X Y)--/X aY holds whenever o(X Y)-----oX oY
holds. When we consider, in general, those pairs of spaces X and Y
for which v(X Y)--oX vY holds, we are involved in their cardinal-
ities deeply, and Comfort [1] obtained interesting results about this
relation under certain conditions for cardinality of space. But we shall
show that analogous theorems to Comfort’s main results hold without
regard to the cardinality in connection with the topological completion
(Theorem 2.3 below). In 3, we consider the classes of spaces which
are defined in terms of the relation ,a(X Y)--,aX ,aY similarly to
McAuthur [4].

1. The local compactness and k-ness of/iX and oX.
In his section the following heorems are useful for our discussion

of he relation between/zX and vX.
(M.I.1) (Theorem 2, Moria [5]). Xc,uXvX.
(C.I.1) (Theorem 4.6, Comfor [1]). In order tha vX be locally

compact, i is necessary and suffieien ha for each p vX there exis
pseudoeompact subsets A and B of X for which p Clox A and here
exists f C*(X) such tha f=0 on A and f--1 on X--B.

(C.1.2) (Theorem 4 (Hager-Johnson), Comfor [1]). Let U be an
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open subset of X and suppose that Clox U is compact. Then Clx U is
pseudocompact.

X is said to be topologically complete if X has a complete uniform-
ity. If any closed countably compact subset of X is always compact,
then we shall call that X satisfies the condition (cc-c). For instance,
if X satisfies any one of the following conditions, then X has (cc-c)"
1) X is subparacompact (Theorem 3.5, Burke [2]), 2) X is symmetric
(Corollary 2, Nedev [6]), 3) X is topologically complete.

Theorem 1.1. Let X be a normal space satisfying the condition
(cc--.c). If Y is a subspace of oX such that X Y, then Y is not a
k-space.

Proof. We shall firstly show that if there is a compact subset K
of Y with L--K F X=/: and K F (Y--X) :/= , then L must be compact.
If L is pseudocompact, then since X is normal, L must be countably
compact and hence L is compact by the condition (ccc). Suppose that
L is not pseudocompact. Then by the usual method there is a discrete
family U} of open sets of X such that x U F L for each n and there
exists f eC(flX) such that 0_<_f_<_l, f(Xn)-l/n, f>=l/n on Un and

f-- 1 on X-- U Un. K being compact, we have g=K Z(f) oX--X.
This is impossible form the well known property of oX. From the
above arguments, the intersection of a compact subset of Y with X is
compact. Thus if Y is a k-space, then X is closed subspace of Y. This
is impossible because X is dense in Y, and hence Y is not a k-space.

Corollary 1.2. If X is normal topologically complete space, then
any subspace Y of X, XY, is not a k-space.

Since it is known that XoX for a discrete space whose cardinal

IXI is measurable, we have the following from Corollary 1.2.
Corollary 1.:. If X is a discrete space with ]XI which is meas-

urable, then oX is not a k-space.
If X is an M’-space, then/X is paracompact M-space (Theorem 2.5,

Isiwata [3]). We have
Corollary 1.4. If X is an M’-space and [X=/=oX, then oX is not

a k-space. (take X--/X in Theorem 1.1)
Theorem 1.5. 1) If [X is locally compact and fXoX, then oX

is not locally compact.
2) If oX is locally compact, then so is [X (and hence oX-/X by

)).
Proof. 1) Suppose that oX is locally compact. Let U be a com-

pact neighborhood of p, p eoX-/X with UoX. Then U F/X is
pseudocompact by (C.1.2). Since/X is topologically complete, U F fiX
must be compact. This implies that p e Clz(U F X)/X which is im-
possible.
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2) Let p be a point in [X--X. Since X is locally compact,
choose two sets A and B and f e C*(X) in (C.1.1). Let F be a conti-
nuous extension of f over fiX. We may assume that A=F-(O)X.
Since /X is topologically complete and A is pseudocompact, Cl,x A is
compact. If p e Cl,x A, then there is g e C(X) with g0 on /X and
g(p)=0. Since p e vX, this is impossible. Thus p e CI,xA. B being
pseudocompact, F-[0, 1/3] f X is pseudocompact and hence F-l[0, 1/3]
gX becomes to be a compact neighborhood (in/X) of p. Thus/X

is locally compact.
2. The relation (X Y)--/2X/.tY.

Theorems used here are
(M.2.1) (Theorem 2.4, Morit [5]). /X is characterized as a

space Y with the properties"
a) Y is topologically complete space containing X as a dense sub-

space.
b) Any continuous map f from X into n arbitrary metric spuce

T can be extended to a continuous map rom Y into T.
(M.2.2) (Theorem 5.1, Morita [5]). Let Y be a locally compact

topologically complete space. Then the relation lu(X Y)--IuX tY
holds or any space X.

Theorem 2.1. If o(X Y)-- oX oY holds, then we have t(X Y)
=/X/Y.

Proof. To prove this it is sufficient by (M.2.1) to show that any
continuous map f from X Y to any metric space T has a continuous
extension over/X/Y. We shall firstly prove that f has a continu-
ous extension over X/Y. The function f f l{x} Y--*T has a con-
tinuous extension f over {x} /Y. Let q be any point in/Y-- Y and
define the function h,(x, y)" X Y (x, q)(-S)--.T by

h,(x, y)-f(x, y) for each (x, y) e X Y,
h,q(x, q)=f(x, q).

We define according to Comfort (p. 109, [1]) the ollowing map F from

XlY to T"
F= [J{hx,q X X, q e laY--Y},

that is, F(x, q) h,(x, q) and FIX Y f Then if h, is continuous,
then it is easy to see that F is continuous (notice that X Y is dense in

X pY). Now suppose that h, is not continuous at (x, q). There is

an open neighborhood W of the point r=h,(x, q) such that any open
neighborhood U of (x, q) contains points which are not carried into W
by h,. This implies tha-t (x, q) e Cls h;,(T W). On the other hand,
there exists a subset Y of Y such that q e Clr Y and h,({x} Y)cW
where W is an open set of T such that r e WcClr WcW. Since T
is a metric space, there is a continuous real-valued function k satisfy-
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ing the conditions such that k--0 on Clr W and k= 1 on T--W. It is
obvious that kf e C(X Y). Since IXtYXY=v(X Y) by
the assumption, kf has a continuous extension over S(XY). This
leads that kf=0 on {x} Y and kf= 1 on h;,(T W) which is impos-
sible. Thus h, is continuous. Similarly the unction F has a con-
tinuous extension over/X/Y. By (M.2.2) we have /(X Y)--/X
/Y.

The ollowing lemma is obvious.

Lemma 2.2. Let f be a map from a k-space X to a metric space
T. If f is continuous on every compact subset of X, then f is conti-
nuous on X.

The ollowings are analogous theorems with respect to Hewitt
realcompactification obtained by Comort (Theorems 2.4, ..., [1]). But
in our theorem there is no need to consider "nonmeasurability" or
"measurability" o the cardinal number of spaces.

Theorem 2.:. Let tX be locally compact and Y be a k-space.
Then we have (X Y)- [X [Y.

Proof. Let T be a metric space and let f be a continuous map of
X Y to T. We shall show that f has a continuous extension over

[X [Y. f fix {y} being continuous, f has a continuous exten-
sion f"/X {y}-T by (M.2.1). Put F-- {f y e Y}. Then F is the
map o2/X Y to T. Since the product o a locally compact space with
a k-space is a k-space,/X Y is a k-space. Thus in order to show that
the continuity o F, we need only show that the restriction o F to each
compact subset K o/X Y is continuous by Lemma 2.2. Let be the
projection o/X Y onto Y and let us put F--FI tXK. By the
same method in the proo of (M.2.2), F is continuous because K is
compact and FIX K-fiX K. This implies that F is a continu-
ous extension of f over /X Y. By (M.2.2)we have /(/X Y)
=/X/Y and hence F has a continuous extension over /X/Y.
Thus the relation/(X Y)-/X/Y ollows rom (M.2.2).

The pseudocompactness o X implies the compactness o /X
(Theorem 3.1, Morita [5]), and hence we have

Corollary 2.4. Let X be pseudocompact and Y be a k-space.
Then the relation l(X Y)= tX lY holds.

Since an essential part of the proo o Theorem 2.3 is that/X Y
and X/Y are k-spaces, we have the ollowing

Corollary 2.. If IX Y and [X IY are k-spaces, then we
have [(X Y)= [X [Y.

Corollary 2.6. If X is an M’-space, then we have t(X Y)=
[Y for any paracompac$ M-space Y.

This ollows rom the acts that or an M’-space X, /X is a
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paracompact M-space and the product o paracompact M-spaces is a
paracompact M-space (notice that a paracompact M-space is a k-space).

Since X is an M’-space if and only if/2X is a paracompact M-space
(Theorem 4.4, Morita [5]) we have

Corollary 2.7. If X is an M’-space, then X Y is an M’-space for
any paracompact M-space Y.

3. The classes _@(/2), /(u) and
In this section we shall show the results obtained by MeAuthur

( 3, 5, in [4]) can be extended to the ease o topological completion
instead o Hewitt realeompaetifieation, by changing definition of the
property 9 and using the results o Morita. The arguments used in
[4] passes current everywhere in our discussion in this section.

Let q) be the finest uniformity o X. Let A (X) be the set eonsist-
ing of all pair (T, f) where T is any metric space and f is any contin-
uous map of X to T. A filter base on X is said to have property
/2(X,/2) i every (T, f) in (X) and every 0, there is a set F in
with the diameter o f(F) is less than e. It is easy to see that a filter
base has the property D(X,/2) if and only if it is a Cauehy filter base
with respect to q. A pair of space (X, Y) is said to have the rectangle
condition i whenever (resp. ) is a filter base on X (resp. Y)with
the property t2(X,/2) (resp. t2(Y,/2)) then the filter base ={F G
F e , G e ?} has the property t2(X Y,/2).

3.1. /2(X Y)--[X [2Y if and only if he pair (X, Y)satisfies
the rectangle condition.

The proof of this is the same as in the proof o proposition 3.3
in [4] except using (M.2.1).

Let _q(/2) be the class of all spaces X such that or every space Y
the relation/2(X Y)=/2X/Y holds. By (M.2.2) _(/2) contains the
class of locally compact topologically complete spaces. We have more-
over the ollowing proposition whose proo is also the same as in the
proo o Theorem 5.2 in [4].

3.2. If X is a member of i([2), then X is topologically complete.
Let /(/2) be the class o all spaces X such that the relation

[2(X Y)=[2X [2Y holds or every topologically complete space Y.
Remarking the act that for discrete space Y and a point p in/Y--Y,
Y (3 {p} with the relative topology is always paracompact, we have the
ollowing theorem similarly to Theorem 5.5 in [4].

3.3. Theorem. X is a member of l(tt) if and only if X is topolo-
gically complete.

Let P(/) be the class o 11 spaces X such that the relation
/2(X/X)=/2X/X holds. By Corollary 2.6 and Theorem 3.2,
contains the class of topologically complete spaces and the class o
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M-spaces.
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