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1. Introduction. In this note we investigate the asymptotic
stability in the large, as t-oo, of the zero solution of the differential
equation

(1.1) " + (t, x, 2, ) q- dp(t, x, c) / c(t)f(x)--O,
where , , f and c are real valued functions. The dots indicate dif-
ferentiation with respect to t and all solutions considered are assumed
real.

In [4] K. E. Swick established conditions under which all solutions
of the non-autonomous equations

(1.2) + p(t) + q(t)g() + r(t)h(x)--O
(1.3) + f(t, x, )+ q(t)g(2) + r(t)h(x)=0
tend to the zero solution as t-c.

Recently, in [2] T. Hara also obtained some conditions under which
all solutions of the equation
(1.4) + a(t)2 + b(t)2 + c(t)x-O
(1.5) + a(t)f(x, 2)2 + b(t)g(x, 2)2 + c(t)x--O
tend to the zero solution as t-c.

To prove the following theorems (see 3) we construct a Liapunov
function using the well-known techniques which are frequent in [3].

2. Auxiliary Lemmaso Consider the sytem of differential equa-
tion
(2.1) 2=F(t, X)
where X-(x,...,x), F(t, 0)=0 for t e I=[0, +c) and F(t,X) is con-
tinuous in I R.

The ollowing lemmas are well-known and play the essential role
to prove the theorems, see [5] (Th. 8.1, Th. 10.2, Th. 14.2).

Lemma 2.1. Suppose that there exists a Liapunov function
V(t,X) defined on O<__t, IIXIIH(HO), which satisfies the follow-
ing conditions (i) V(t, 0)=0, (ii) w(llXII)<= V(t, X), where w(r) is a con-
tinuous increasing, positive definite function, (iii) (.)(t, X) <:0.
Then, the zero solution X(t)=_O of the system (2.1) is stable.

Lemma 2.2. Suppose that there exists a Liapunov function V(t, X)
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defined on 0=<t< +c, IIXIIR where R may be large, which satisfies
the following conditions (i) w(llXl)<_ V(t,X)<=w(llXll) where w(r) and
w(r) are continuous increasing functions such that w(r)c as r-c.
(ii) (.)(t,X)<=O. Then, the solutions of (2.1) are uniform-bounded.

Lemma 2.3. Suppose that there exists, a non-negative Liapunov

function V(t, X) defined in I R such that (..)(t, X) <= w(X), where
w(X) is positive definite with respect to a closed set 9 in the space R.
Moreover, suppose that F(t, X) is bounded for all t when X belongs to
an arbitrary compact set in R and that there exists a function H(X)
defined on [2 such that"

(a) F(t, X) tends to H(X) for X e [2 as tc and on any compact
set in 9 this covergence is uniform.

(b) Corresponding to each 0 and each Y e 2, there exist a

(, Y)0 and a T(e, Y)0 such that if IIX-YII <(, Y) aud tT(, Y)
we have F(t, X)--F(t, Y)II <e.

Then, every bounded solution of (2.1) approaches the largest semi-
invariant set of the system --H(X) contained in tO as t-c. In par-
ticular, if all the solutions of (2.1) are bounded, every solution of (2.1)
approaches the largest semi-invariant set of =H(X) contained in [2

a8 t--c

:. Assumptions and Theorems. We now state the assumptions
on the unctions , 0, f and c appeared in the equation (1.1).

Assumptions. ( I f(x) is a continuously differentiable function
in R, and c(t) is continuously differentiable in I-[0, c).

( II The function (t, x, y) is continuous in I X R. For the func-
tion there exist functions b(t), 0(x, y) and (x, y) which satisfy the
inequalities

b(t)Oo(X, y)<= (t, x, y)<_ b(t)O(x, y)

for all (t, x, y) e I X R. The function b(t) is continuously differentiable

and functions o(X, y), (x, y), (x, y)and x(x, y)are con-in I,

tinuous in R.
(III) The function (t, x,y, z) is continuous in I xR. For the

function there exist functions a(), o(X, y) and (x, y) which satisfy

the inequalities
a(t)o(X, y)z <= (t, x, y, z)ga(t)x(x, y)z

for all (t, x, y, z) e I R. Further the function a(t) is continuously dif

ferentiable in I and functions o(X, y) (x, y) 3O.(x, y) and 34x-(x, y)
X X

are continuous in R. The following notations are also used"

y)--
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Theorem 1o Suppose that the assumptions (I), (II) and (III) above
and that these functions satisfy the following conditions"

(1) f(0)--0, f(x) >fo>O (x=/=O)
X

(2) f’(x)f_<_l
(3) (t, x, 0)--0 in IR

(x, y) >__ o>0 (y =/= 0), x(x, y) <= 0 in R
Y

( 4 ) J(x, y) >= Jo > O, (k(x, y)y <-_ 0 in R
(5) O<coC(t)<=c, O<bo<=b(t)<=b, Oao<=a(t)<=a

(6) sup --1{1(x, y)--o(X, Y)}=Pl
y0 y
sup {l(x, y)--4Xo(X, y)}--q
Y

(7) aobogfo4o>C
(8) 8(/boo--Cfl)(aoo-- /) >([aql +blpl)

aobooo+ clwhere
2boo

(9) sup [a21 a’(t) + 1{: b’(t)lc(t)_c,(t)} ] < aoboOo4Xo--c

(10) ;]a’(t)ldt< +c, ;Ib’(t)]dt< +, I;]c’(t)ldt< +c and

c’(t)-oO as t--c.
Then every solution of (1.1) is uniform-bounded and satisfies x(t)--O,
(t)--O, (t)O as t-.

Next, considering the equation

(3.1) + a(t)(x, 5c) + b(t)(x, 2) + c(t)f(x)--O
we can take the unction (x, y) in place of 0(x, y) and (x, y), and the
unction (x, y) in place o 0(x, y) and (x, y) in the Assumptions (II),
(III). Thus in this case the unctions (x, y) and (x, y) coincide with

(x,y) and (x,y) respectively, and p=q=0. Thus rom the Theo-
rem 1, we have

Theorem 2. Suppose that the functions a(t), b(t) and c(t) are
continuously differentiable in I--[0, +c), and the functions f(x),
(x, y), (x, y), (x, y) and (x, y) are continuous in R, and that
these functions satisfy the following conditions"

(1) f(0)=0 f(x).>__fo>O (x=/=0), f’(x)_<_l
X

(2) gi(x, 0)-- 0
(x, y) >= 00> 0 (y =/= 0), (x, y) <= 0 in R

Y
(3) (x, y)>=o>O, x(x, y)y<_O in R
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(4) O<co<=C(t)<=c, O<bo<=b(t)<=b, O<ao<=a(t)<=a (teI)
(5) aobooo)cl

te ao-- bo 2

[2- aobooo+ c
2boo

(7) .[: la’(t)l dr( + c .[:lb’(t)l dr( + .[: Ic’(t)l dr( + and

c’(t)-O as t--..
Then every solution of (3.1) is uniform-bounded and satisfies x(t)

0, (t)-O, (t)-.o as t-.
Remark. In the case that the equation (3.1) reduces to an autono-

mous equation, that is, the functions a(t), b(t) and c(t) are independent
of t, the conditions (6), (7) of the Theorem 2 are automatically satisfied,
and our results coincide with that obtained by J. O. C. Ezeilo [1] and
so forth. Especially when the equation (3.1) reduces to a linear dif-
ferential equation with constant coefficients, then the conditions des-
cribed in the Theorem 2 coincide with the Routh-IIurwitz condition.

4. Proof of Theorem 1. First of all we note that the equation
(1.1) is equivalent to the following system of differential equations
(4.1) 2=y, ?=z, 2=--f(t, x)--(t, x, y)--(t, x, y, z).

A Liapunov function satisfying the conditions assumed in the aux-
iliary lemmas will be given as follows;

(4.2)
U(t, x, y, z)

e-l/(t’ =1 ’t -Ix, y,z), where p(t) a’(t) + b’(t) +ao bo
2V(t, x, y, z)

c’(t)
c

(4.8) =2e(t) ,{1-f’(O}f(Od+e(t) f()+
+ (fly + z)+ ! (flb(t)(x, )- c(t)v}d

+2Z:{a(x,)--}d.
CFrom the condition a00 Z b0

there exists a positive number

3 such that Z(1--)b00c and a00(1--) Z.
Let o--min Cof, boo-- Cl + aoo-- then we

Z(1-) (1- )’
easily have or t e I,
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(4.4) U(t, x, y, z)>__ e-() (o" (x +Y+ z)--w(ll x
The existence of continuous increasing function w(l[X[[),

/x +y+ z) satisfying
(4.5) y(t, x, y, z)w(x)
is easily obtained, and we have

e-)(.)(t,- x, y, z)
?(., (t, x, y, z)- p(t)V(t, x, y, z)

= 2(fie(t, x, y)--c(t)f’(x)y}y-- 2(+(t, x, y, z)-

2(c(t)p(t)- c’(t)}..[[ {I-- f’()}f()d$

t ao c0

ao a0

(,%-)N (v+)
for suitable choice of positive . herefore we have

and (.4), (4.), (.6), Lemma 2.1 and Lemma 2.2 show ha he
soluHon of (4.1) is stable and all the solutions of (4.1) are uniform-
bounded.

he unetion a(z, g, ) is positive definite with respect to the closed
set 9 ={(, , )1 e R, V=0, =0}.
(.7) F(t, , , )-

-e(t)f()-(t, , v)-(t, , v, )
then P(t, , , ) is bounded or all t s I when (, g, ) belongs to an arbi-

trary compact set in Ra, and P(t, z, V, )- 0 in D, and
-e(t)f()/

ast (CoCC).
If we set
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then conditions (a) and (b) in Lemma 2.3 are all satisfied, and since all
solutions of (4.1) are bounded as obtained above, it follows that every
solution o (4.1) approaches the largest semi-invariant set of the system
=H(X) contained in 9 as tc. The system =H(X) is a system
of equations

2--0, --0, 2----c.f(x)
and has the general solution

x-, y--- -, z- 3-- c. f(l)t.
In order to remain in 9, the above solutions must satisfy the con-

ditions" y2=0 and -c.f(y)t=O for all t>=0, and these imply y--0,
f(y)-0, and thus y=0, 7=0. Therefore the only solution of X
=H(X) remained in /2 is X=0, that is, the largest semi-invariant set
of the system X=H(X) contained in 9 coincides with the point (0, 0, 0).
Thus we have the conclusion from Lemma 2.3. Q.E.D.

Details are somewhat complicated and will be published later.
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