No. 10] Proc. Japan Acad., 48 (1972) 765

171. On the Regularity of Domains for the First Boundary
Value Problem for Semi-linear Parabolic
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By Haruo MURAKAMI
Kobe University

(Comm. by Kinjiré6 KUNUGI, M. J. A., Dec. 12, 1972)

In this short note, we shall prove that a domain DC R™*! is regular
for the first boundary value problem (=the Dirichlet problem or the
initial-boundary value problem) for the semi-linear parabolic partial
differential equation:

_< o'u ou __ ou ou
®)  Pu=3: a0 —T= f(x, b, 2L, 2 )
if it is regular for Pu< —1.

It is well known that even for the simplest equation of this kind,

namely, for the heat equation

noou ou

there may not be a solution # for the first boundary value problem if
we require % to take values prescribed on the (whole) topological bound-
ary of the domain. For example, consider the first boundary value
problem for (H) for n=1 for the domain {(z, ¥); 0<a<1, 0<t<1}.
Values of the solution w(x,t) on the upper boundary {(x,?); 02 <1,
t=1} are determined by the values of w given on the side boundary
{@,?);x=00r1,0=t<1} and the lower boundary {(x,?) ; 02 =<1, {=0}.

Prompted by this example, let us split the topological boundary
oD of a domain D bounded by a finite number of sufficiently smooth
hypersurfaces into three parts, namely, i) Side boundary 9,D: closure
of the part where the outer normal is not parallel to the time axis,
ii) Lower boundary 9,D: closure of the part where the outer normal is
in the —t direction, and iii) Upper boundary 0,D: interior of the part
where the outer normal isin +¢ direction. We shall call the set 4,D
=0,DU0d,D the parabolic boundary of D, which is the set where we
should give the boundary data. In other words, a point of 9,D must
be considered parabolically an interior point of D. So, the question to
be asked will be: is there always a solution of < #=0 (or more generally,
Pu=f) in D admitting a continuous boundary value prescribed on d,D?

Another example shows that there is not always a solution. Let
C(P, r) be the parabolic circle (sphere) for the heat equation (H) for
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n=1 with centre P=(x, t) and radius . By this we mean that C(P, r)
is the curve expressed by a parameter 6 as follows:
g¢=x++/ 27 sin ¢ v/Iog cosec? &

r=t—r*gin’g, — L << T,
2 2

Note that the curve C(P,r) is the level curve E(z,t; & t)=1/r of the
elementary solution
1 exp (— (“‘5)2) e<t

E(x’t;§, 7): '\/t_f 4(t—~f)
0 t=t.
If u satisfies the heat equation, we see by Green’s formula that

x/2 —
I u(&, 7) cos 6+/1og cosec® 8 dd=u(x, t).
—n/2

This mean value theorem shows that the top point P of C(P,r) is an
irregular point for the domain surrounded by C(P,r), for if we give
continuous boundary data g on C(P, r) that vanishes except in a small
neighbourhood of P, where we assume $>0 with p(P)=1, then the
solution % admitting g on C(P, r), if it did exist, must satisfy
1=8{P)=u(x, )= m/z B(&, ©) cos 0+/Tog cosec’ 6 di<1.

Recently, E. G. Effros and J. L. Kazdan [1] proved that a boundary
point where the outer normal is in the +¢ direction is regular for the
heat equation if this point is parabolically touchable. They defined
the parabolical touchability as follows. If u(x,t) is a solution of the

t
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heat equation (H) then clearly u(2°x, 4°t) is also a solution. By letting
(o) (z, 1) =2, 4°t), and T(G)={z(a)(x, — 1) ; (x, —=1) € G, — oo <a< oo}
U{(0, 0)} where G is a closed n-sphere in the hyperplane {(x,?); x ¢ R",
t=—1}, they defined that a point @ of 3, D is parabolically touchable if,
upon translating D so that @=(0,0), there is a tusk T(G) with T(G)
ND={(0,0)}. This tusk plays a role analogous to that of Poincaré’s
cone for the Laplace equation.

Thus, by the following theorem, which asserts that a domain is
regular for (E) if it is regular for Pu< —1, we see that a domain D
is regular for

cu:f(x,t,u, u ... au),

ox, o,
if each point of the parabolic boundary 4,D=0,DUd,D of D is para-
bolically touchable.

In the sequel, we use the following notations. For a function f(x)
defined on a set A, f*(y) for y € 4 denotes lim,_, Sup,cp f(*) and f,(¥)
denotes lim, ., inf,., f(x). We denote by K (D) the set of functions
defined on a domain DC R**! which are twice continuously differentiable
in « and once continuously differentiable in £.

Theorem. We consider the equation

u o*u ou ou ou
(E) Pu:i;'l Gy (@, 8) dxom, ot f(x, b, o’ o, )’
where {a;,(x, t)}, each a;(x, t) being assumed to be bounded on a bounded
domain DC R™*!, is symmetric and positive definite, and f is a function
satisfying the following condition: for any M >0 there exist B and I'
such that

[ f(@, ¢ u, Dy, - -+, D)|SB -;1"’“(%’ Opw;+1I

for P=(x,t) e D, |u|l=M,p=,, -+, ) € R*. Let P,=(x,,t,) be a point
of ,D. Assume that there exists a function V(z,t) e K(D) such that
Y (P)=0 for Peo,D,limp,,p.p, ¥(P)=0, and Py<—1 on D". Let
Bz, t) be a bounded function on 3,D. Then, for any ¢>0, K<0 and
L>0, there exist a neighbourhood V=V(p, ¢, K, L) and barrier functions
a(x, t), w(x, t) e K(DNV) satisfying

(i) @*(Po)<,8*(Po)+e, (_Q*(Po)>,8*(Po)—'5,

(ii) @, (P)>BP), w(P)<BP) for Pe VNa,D,

(iii) @,P)>L, o*(P)<K for Pe DNavV,

Pa(z, t)<f(x,t,a(x, £, aa@ .., 00 )

(iv) x, ’ 0%,
o 0w

P(Q(%, t)>f x,t,g)(xa t)a P on D.
0, 0x,

1) This assumption implies ¥(x,£)=0 on D. See [2], p. 533, [4], p. 12.
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Proof. Since K, L are arbitrary constants, we may assume that
—K=L>sup{px,?t)|; (x,t) €d,D}. Let C=2L=L—K. Then by the
assumption of the theorem, there exist B=B(M) and I'=I"(M) such
that

lf(x’ t’ Uy Pry ** ‘,pn)léB Z: aij(xa t)p'tpj“l‘r
for (x,t) e D,|u|EM, —co<p;< o0 (1=1, ---,m). Since
g (P)=limsup p(P),  B.(Py)=lim inf p(P),

3pD3P—Pg apD2P—Py
there exists a cylindrical neighbourhood {(, t) ; | —,|<d, |t —1t,|<%} of
P, such that B.(P,)—e/2<pP)<p*(Py) +¢/2 for P=(x,1) € 3,D in this
neighbourhood. Letting
¢<x>=—é—{exp (CCy|z—a, /59 —1},
1
we set
0@, =2 108 [CANV(@, ) +3(@)}+ 11+ Cilt—tf -+ B P +£,
1

-1

1
where C,, C, and N are constants to be determined later.

Since limy;p_p, Y(P)=0 and lim,,»_p, () =0, we have

lim @(P)=p*(P)+-<,
D3P~-Py 2
which shows that @(P) satisfies (i). ,
Let U={(x, ) ; |x—x,| <3, |t—1,| <7}, and S={(z, ) e UN D ; Ny(,1)
+é(x)=@1/C) (exp CC,—1)}. Then Py=(x,, t,) isnotin S. Let V be the
largest open neighbourhood of P, in U such that Vc U-—S.
For P=(x,t) ¢ VNd,D we have

@4(P) =—é,~ log [C{NV,.(P) +¢(2)} +11+4C, |t — b, -+ §*(Py) -l—%

C.Q(xy t) =

log [C{Nv(, t) +¢(@)}+1]—C,|t—t, JZ+19*<P0)—§,

Zﬁ*(Po)+—;—>ﬁ(P),

which shows that @(P) satisfies (ii).

For (iii), let P=(x,t) e DNoV. Note that if |x—x,|=45, then ¢(x)
=(1/C) lexp (CC6*/6)—1]. Hence V is in the cylinder |z —x,|<s. But
dV may meet the upper and lower boundary of U. If PecaV is on the
upper or lower boundary of U, then

O(P) = 10g [CNYP)+ 9@} + 11+ Ca+ 5*(P) + £

1
We shall take C, so large that Cy*+ p*(P) +¢/2>L (and —Cyp+ B,(Py)
—e/2<K). If PegV is not on either the upper or the lower boundary
of U, then Ny(P)+¢(x)=(1/C,) (exp CC,—1). In this case
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w(P>zFIog [CIC (exp CC,—D+1] + Gt b+ (P + 5

2C+p*(P)+E=L—K+§@)+52L+L.

Thus we have @*(P)>L on DNV, which proves (iii).
We shall now prove (iv). Since

0w _
0, C(N«lf—l-¢)+1
) (Nv+9) 01 (lef+¢)———(N«lr+¢)
0’@w — »La 7 _
oxdx;  C(Nv+¢)+1 {CI(N¢+¢)+1}2 ’
and
N2
0o ot
= 2 —1ty),
oGPl ot
we have
0%y o
o= ay@ B _8o {Z " G, 3{}
g ,axj at Cl(Nfo—l—ng)—i—l
o°¢
+ Z aij(x, t) axiaxj B
C(Ny+¢)+1 ' {C (N«jf+¢)+1}2
—2C,(t—ty).
Since
aafi = 25? |2 — 2, /%) (@ — )
and
06— {0+ A= @'~ CCI}—C—exp (CC lz—a, /),
w0, &
we have
7 62¢ _ n —g— _ 2 82
gilau(x, t) axiaxj—ZZau(x, t) 5 exp (CC,|x—u,f* /)

+ 405 G, [Z 04y, £)(ot — 1) (! — ] )]

-exp (CCy|z—,[' /).
Set A, =sup X a;(x, t), A,=sup X a,(w, )£, for (z,t)eD, [§|=1.
Then

z 04, t) g —<2A1+4A CC|x— /&) exp (CC, |x— /).
X4 j

Therefore
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PCB—f(x, ta @(x, t)} 06 (x, t)’ Tty 90 (%, t))
GEA ox,

1
C\(Nv+¢)+1

a 0
, t N " (N
B—C) 2 a2, 1) o2, (Nv+¢) o, (NVy+¢)

{C.(NV+¢)+1F
Take C,=B, and note that C,(N¥+¢)+1<eCrin DNV. If wetake N
so large that

IA

[-v+ %(zAl +44,0C)e]

+I'—2C,(t—1,).

{—g—(zAl +44,CC) +<r+2czn)} T <N,

then we have
Pa—f(x,t, o, t), 98 ... 0@

’ ]
oz, 0%,

)<0 onDNV.

This completes the proof.

Corollary. If DCR"*!1is a bounded domain such that each point
of its parabolic boundary 8,D is parabolically touchable, then to each
point of 9,D we can construct barrier functions for the equation o u
= f(z, t, u, Qu/ox,), - - -, (Ou/0x,)), where f is assumed to satisfy the
same condition stated in the theorem, that is, | f(x,t,u, p)|<B|pPF+1I.
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