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In this short note, we shall prove that a domain DcR + is regular
2or the first boundary value problem (--the Dirichlet problem or the
initial-boundary value problem) or the semi-linear parabolic partial
differential equation"

(E) P u=_ a(x, t)- Ou Ou f x, t, u, Ou Ou

if it is regular for P u-1.
It is well known that even or the simplest equation of this kind,

namely, 2or the heat equation
8u OU_o,(H) wu
3x

there may not be a solution u or the first boundary wlue problem
we require u to take values prescribed on the (whole) topological bound-
ary o the domain. For example, consider the first boundary value
problem or (H) or n=l or the domain {(x, t); 0<x<l,
Values o the solution u(x, $) on the upper boundary ((x, $); 0xl,
t--l} are determined by the values o u given on the side boundary
{(x, t) ;x--0 or 1, 0tl} and the lower boundary {(x,t) 0xl, t--0}.

Prompted by this example, let us split the topological boundary
D o a domain D bounded by a finite number o sufficiently smooth
hypersurfaces into three parts, namely, i) Side boundary 3D" closure
of the part where the outer normal is not parallel to the time axis,
ii) Lower boundary tD" closure o the part where the outer normal is
in the --t direction, and iii) Upper boundary D" interior o2 the part
where the outer normal is in + t direction. We shall call the set
3tD3D the parabolic boundary of D, which is the set where we
should give the boundary data. In other words, a point o 3uD must
be considered parabolically an interior point of D. So, the question to
be asked will be" is there always a solution of w u-0 (or more generally,
Pu-f) in D admitting a continuous boundary value prescribed on 3D ?

Another example shows that there is not always a solution. Let
C(P, r) be the parabolic circle (sphere) or the heat equation (H) or
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n--1 with centre P-(x, t) and radius r. By this we mean that C(P, r)
is the curve expressed by a parameter t as ollows"

{:--x+/2rsinO/iogcosecO--t--r sin t, --_<t_<.
2- --2

Note that the curve C(P, r) is the level curve E(x, t;, r)=l/r o the
elementary solution

E(x, t; , ) t . exp
4(t--)

< t

If u satisfies the heat equation, we see by Green’s ormula that
/

u(, r) cos t/log cosec t dt=u(x, t).
/2

This mean value theorem shows that the top point P of C(P, r) is an
irregular point or the domain surrounded by C(P, r), for if we give
continuous boundary data fl on C(P, r) that vanishes except in a small
neighbourhood of P, where we assume >0 with fl(P) 1, then the
solution u admitting/ on C(P, r), if it did exist, must satisfy

’12

1--(P)=u(x, t)-- /(, ) cos t/log cosec t dtl.
-/

Recently, E. G. Effros and J. L. Kazdan [1] proved that a boundary
point where the outer normal is in the + t direction is regular or the
heat equation if this point is parabolically touchable. They defined
the parabolical touchability as follows. If u(x, t) is a solution of the

X
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heat equation (H) then clearly u(2"x, 4"t) is also a solution. By letting
r(c) (x, t) (2"x, 4"t), and T(G) {r(c)(x, 1) (x, 1) e G, c a c}
[J {(0, 0)} where G is a closed n-sphere in the hyperplane {(x, t) x e R,
t- --1}, they defined that a point Q of 3 D is parabolically touchable if;
upon translating D so that Q-(0, 0), there is a tusk T(G) with T(G)
D-{(0, 0)}. This tusk plays a role analogous to that of Poincar’s
cone or the Laplace equation.

Thus, by the ollowing theorem, which asserts that a domain is
regular for (E) if it is regular for Pu-1, we see tha.t a domain D
is regular or

u--f(x,t,u, u u)3xl 3x
if each point of the parabolic boundary D=D(J3D of D is para-
bolically touchable.

In the sequel, we use the following notations. For a function f(x)
defined on a set A, f*(y) for y e A denotes lim sup. f(x) and f.(y)
denotes lim inf. f(x). We denote by j/(D) the set of functions
defined on a domainDRn+ which are twice continuously differentiable
in x and once continuously differentiable in t.

Theorem. We consider the equation

(E) P u=_ , a(x, t) u u f (x, t, u, u u ),= xx t x X
where {a(x, t)}, each a(x, t) being assumed to be bounded on a bounded
domain DRn+, i8 symmetric and positive definite, and f is a function
satisfying the following condition" for any MO there exist B and F
such that

If(x, t, u, p, ..., pn)lB , ai(x, t)pp+F
i,j=l

for P--(x, t) e D, lulgM, p-(p, ., p) e R. Let Po-(Xo, to) be a point

of 3D. Assume that there exists a function (x, t)e j(D) such that
,(P)>=0 for P eD, limeeo(P)--0, and P <= -I on D). Let
fl(x, t) be a bounged function on 3D. Then, for any 0, K40 and
L O, there exist a neighbourhood V-= V(fl, , K, L) and barrier functions
(x, t), (x, t) e j(D V) satisfying

( *(Po)<fl*(Po)+, _w.(P0)>fl.(P0)-e,
(ii) .(P) > fl(P), _w.(P) < fl(P) for P e V 3D,
(iii) ,(P)L, *(P)K for P e D 3V,

(v)

xl ’Xn /

1) This assumption implies p(x,t)>=O on D. See [2], p. 533, [4], p. 12.
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Proof. Since K, L are arbitrary constants, we may assume that
--K--Lsup {lfl(x, t)l; (x, t) e 3D}. Let C-2L--L--K. Then by the
assumption of the theorem, there exist B--B(M) and F-F(M) such
that

If(x, t, u, p, ...,
for(x,t) eD, lul<__M,--cpc(i--1,...,n). Since

fl*(Po)- lira sup fl(P), fl.(Po)- lim inf fl(P),
01D S P--’Po OD P--*Po

there exists a cylindrical neighbourhood ((x, );IX--Xol,l--ol<]} o
P0 such that fl.(Po)--/2fl(P)<fl*(Po)+S/2 for P=(x, t) e 3D in this
neighbourhood. Letting

(x) ---,{exp (CC Ix-- Xol /) 1},

we set

(x, t)- C--f1 log [C{Yq(x, t)+(x)}+l]+C[t-to[+fl*(Po)+-,
o(x, t)- -__1 log [Cl{Nq(x, t)+(x)}+ 1]-C,.[t-tol+.(Po)-

where C, C. and N are constants to be determined later.
Since limgee q(P)-0 and lime_e (x)-0, we have

lim (P) -/*(P0) + -,
D g P--’Po

which shows that (P) satisfies (i).
Let U--{(x, t) IX-Xol, lt-tol}, and S-((x, t) e U fD Nq(x,t)

+(x)>=(1/C) (exp CC-I)}. Then Po--(Xo, to) is not in S. Let Vbe the
largest open neighbourhood of P0 in U such that V U-S.

For P-(x, t) V3D we have

.(p) 1___ log [C{N.(P) +(x)} + 1] +C 2

>- fl*(P0) +->/(P),

which shows that (P) satisfies (ii).
For (iii), let P--(x, ) e DfOV. Note that if IX--Xol>=$, then (x)

>__(1/C) [exp (CC$/3)-I]. Hence V is in thecylinderlx--x01<$. But
OV may meet the upper and lower boundary of U. If P e OV is on the
upper or lower boundary of U, then

(p) 1 log [C{Nq(P) +(x)}+ 1] + C2] + fl*(Po) +C 2

We shall take C. so large that C+*(Po)+/2L (and --C.]+.(P0)
--s/2K). If P e OV is not on either the upper or the lower boundary
of U, then Nq(P)+(x)>=(1/C) (exp CC-I). In this case
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(p)> 1 log [C 1 (exp CC-I)+I] +C.[t-tol+ft*(Po)+c-?
>L+L--K+*(Po) +->= C+*(Po) + 2 2"

Thus we have *(P)>L on D 3V, which proves (iii).
We shall now prove (iv). Since

and

we have

0 x (N+C, Oxi (Y++ 0)0 + )
{C(N++)+ I}

and

a____ at +2c.(- o),
at C,(N+) +1

Since

a 2C

we have

exp (CC, Ix- Xol/9(x-Xo)

{2a+ 4(x--x)(x--Xo)CC} C
.a -- exp (CCix-Xo

a,(x, t) 2 =2 a.(x. t)- exp (CClx-xol/c)
.= xx =

exp (CC, Ix-xol=/ag.
Set A sup a,(x, t), A = sup a(x, t) for (x, t) e D, I1-1.
Then

a(x. t)- a (2A+4ACC,lx--Xol/a9 exp (CClx-xol/9.

Therefore
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..(x,t))P-f x, t, (x, t), -, Lx, t), .,

<_ 1 I_N +(2A,+4A..CC1)eCCl]CI(N+)+ 1
a ax (N+(B--C1) +F-2C(t-to).
{C(N++)+}

Take CLUB, and note that CI(N+)+lgecc’ in D V. I we take N
so large that

{(2A+4ACC) +(F+2C)} eCC’<N,

then we have

P-f(x,t,(x,t) O
Ot’ ""-Oz <0 onDV.

his completes the proof.

CorollarT. I DRTM i bogeg domaie that eeh point

o it pambolie bogarg OD i ambolieallg toehable, the to
point of OD we can construct barrier unctions for the equation u

f(x, t, u, (3u/3x), ., (3u/3x)), where f is assumed to satisfy the
same condition stated in the theorem, that is, [f(x, t, u, p)[B]p[+F.
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