17. Generalized Vector Field and its Local Integration

By Akira Asada
Department of Mathematics, Sinsyu University, Matumoto
(Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1973)

In this note, we give a generalization of the notion of vector field for a (topological) manifold with a fixed metric and treat the local existence of its integral curve. It also gives a generalization of the notion of tangent of a curve and it allows to consider the tangents at the origin of R^{2} of the curves such as $r \theta=1$ or the graph of $x \sin (1 / x)$. Part of this note has been exposed in [3] and the details of the other part (together with the global studies) will appear in Journal of the Faculty of Science, Shinshu University, vol. 7 under the title "Generalized integral curves of generalized vector fields".

1. \boldsymbol{d}_{ρ}-smooth functions. We denote by M a connected paracompact n-dimensional topological manifold. By [2] (for the notations, see also [1]), we may choose a metric ρ of M such that by which the topology of M is given and satisfy
(i) If $\rho\left(x_{1}, x_{2}\right) \leqq 1$, then there is unique path γ given by $\varphi: I \rightarrow M$ such that which join x_{1} and x_{2} and

$$
\begin{gathered}
\rho\left(x_{1}, x_{2}\right)=\int_{r} \rho=\lim _{\left|t_{i}-t_{i-1}\right|-0} \sum_{i=1}^{m} \rho\left(\varphi\left(t_{i}\right), \varphi\left(t_{i-1}\right)\right), \\
0=t_{0}<t_{1}<\cdots<t_{m-1}<t_{m}=1 .
\end{gathered}
$$

(ii) To regard ρ to be an Alexander-Spanier 1-cochain of M, if γ is a curve of M such that $\int_{\gamma} k_{a} \delta \rho=0, a \in \gamma$, then there is a curve γ^{\prime} which contains γ and

$$
\int_{\gamma^{\prime}} \rho=\infty, \quad \int_{r^{\prime}} k_{a} \delta \rho=0, \quad a \in \gamma^{\prime}
$$

In $M \times M$, we set $s(M)=\{(x, y) \mid \rho(x, y)=1, x \in M\} . s(M)$ is the tatal space of an S^{n-1}-bundle over M and its associate $C\left(S^{n-1}\right)$-bundle is denoted by $C(s(M))$. Here, $C\left(S^{n-1}\right)$ means the Banach space of continuous functions on S^{n-1} with the compact open topology. Then we can define the Gâteaux-differential d_{ρ} with respect to ρ (cf. [4], [5]) as the map from the space of functions on M to the space of cross-sections of $C(s(M))$ as follows.

$$
\begin{equation*}
d_{\rho} f(x, y)=\lim _{t \rightarrow \infty} \frac{1}{t}\left\{f\left(r_{x, y, t}\right)-f(x)\right\}, \tag{1}
\end{equation*}
$$

where $r_{x, y, t}$ means the point on the curve which joins x and y with the length 1 such that $\rho\left(x, r_{x, y, t}\right)=t$.

Definition. A function f on M is called d_{ρ}-smooth or $C\left(S^{n-1}\right)$-smooth if $d_{\rho} f$ is a continuous cross-section of $C(s(M))$.

We note that if M is smooth and ρ is the geodesic distance of some Riemannian metric on M, then f is d_{ρ}-smooth if and only if f is smooth. We denote the space of all $C\left(S^{n-1}\right)$-smooth functions on M by $C_{C\left(S^{n-1}\right)}(M)$.

Theorem 1. $C_{C\left(S^{n-1}\right)}(M)$ is a dense subring of $C(M)$, the space of all continuous functions on M with the compact open topology.
2. Generalized vector field. We call a function f on M to be d_{ρ}-differentiable if $d_{\rho} f(x)$ exists at every point of M. The space of d_{ρ}-differentiable functions on M is denoted by $C_{\rho}(M)$.

Lemma 1. If $f \in C_{\rho}(M)$, then the function $\left\|d_{\rho} f\right\|$ given by

$$
\left\|d_{\rho} f\right\|(x)=\max _{y, \rho(x, y)=1}\left|d_{\rho} f(x, y)\right|
$$

is locally bounded.
Definition. A linear operator X from $C_{\rho}(M)$ into $M_{\text {loc. }}(M)$, the space of locally bounded functions on M, is called a generalized vector field, or a $C\left(S^{n-1}\right)$-vector field, on M if it satisfies
(i) X is a closed operator.
(ii) $(X f)(a)$ is equal to 0 if $|f(x)-f(a)|=o(\rho(a, x))$ at a.
(iii) $X(f g)$ is equal to $f X(g)+g X(f)$.

We denote the dual bundle of $C(s(M))$ by $C^{*}(s(M))$. It is a $C^{*}\left(S^{n-1}\right)$ bundle over M.

Theorem 2. If X is a generalized vector field on M, then there exists a cross-section $\xi(x)$ of $C^{*}(s(M))$ such that

$$
\begin{equation*}
X f(x)=\left\langle\xi(x), d_{\rho} f(x)\right\rangle \tag{2}
\end{equation*}
$$

Conversly, if $\xi(x)$ is a cross-section of $C^{*}(s(M))$, then to set $X f(x)$ $=\left\langle\xi(x), d_{\rho} f(x)\right\rangle, X$ is a generalized vector field on M.

Definition. If a generalized vector field X is given by $X f(x)$ $=\left\langle\xi(x), d_{\rho} f(x)\right\rangle$, then we set

$$
\xi(x)=\operatorname{rep} . X
$$

3. Generalized tangent. Let γ be a curve of M given by $\varphi: I \rightarrow M$, $\boldsymbol{I}=[0,1]$ and $\varphi(0)=a$, then if the limit

$$
\lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{1}{t}\{f(\varphi(t))-f(a)\} d t\right]
$$

exists for any d_{ρ}-differentiable function f of M at a, then there exists a positive measure ξ on $S_{a}=\{y \mid \rho(a, y)=1\}$ such that

$$
\begin{equation*}
\left\langle\xi, d_{\rho} f(a)\right\rangle=\lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{1}{t}\{f(\varphi(t))-f(a)\} d t\right] . \tag{3}
\end{equation*}
$$

Definition. We call the above ξ to be the generalized tangent of γ at a.

Example 1. If γ is smooth at a, then the generalized tangent of γ at a is $c \delta_{y}$, where c is a constant and δ_{y} is the Dirac measure on S_{a} with the carrier $\{y\}$.

Example 2. If γ is given by $r \theta=1$ in \boldsymbol{R}^{2}, then the generalized tangent of γ at 0 , the origin of R^{2}, is $(1 / 2 \pi) d \theta$.

Example 3. If γ is the graph of $x \sin (1 / x), x>0$, then the generalized tangent of γ at 0 is the measure on S^{1} with the carrier $-\pi / 4$ $\leqq \theta \leqq \pi / 4$ and given there by $\left(1 / \pi \cos ^{2} \theta \sqrt{\cos (2 \theta)}\right) d \theta$.

Note. Prof. Uchiyama teaches the author that if $x f(1 / x)$ is almost periodic in the sense of Besicovič, then the graph of $f(x)$ has the generalized tangent at the origin. On the other hand, it is also shown that if f is Lipschitz continuous near the origin, then the graph of f also has the generalized tangent at the origin.

Theorem 3. If ξ is a positive measure on S_{a}, then there exists a curve on M such that its generalized tangent at α is ξ.
4. Local integration of the generalized vector field. We assume $M=\boldsymbol{R}^{n}$ and ρ is the euclidean metric. Hence we have

$$
s\left(\boldsymbol{R}^{n}\right)=\boldsymbol{R}^{n} \times S^{n-1} .
$$

In $C\left(S^{n-1}\right)$, we denote the subspace consisted by the linear functions by $l\left(S^{n-1}\right)$ and decompose $C^{*}\left(S^{n-1}\right)$ as follows: To define a subspace $l^{*}\left(S^{n-1}\right)$ of $C^{*}\left(S^{n-1}\right)$ by

$$
l^{*}\left(\mathbf{S}^{n-1}\right)=\left\{\sum_{i=1}^{n} c_{i} \delta_{i} \mid c_{i} \in \boldsymbol{R}\right\},
$$

where δ_{i} is the Dirac measure of S^{n-1} with the carrier at ($0, \cdots, 0, \stackrel{i}{1}, 0, \cdots, 0$), and set
(4) $\quad C^{*}\left(S^{n-1}\right)=l^{*}\left(S^{n-1}\right) \oplus l\left(S^{n-1}\right)^{\perp}$.

In (4), we denote the projections from $C^{*}\left(S^{n-1}\right)$ to $l^{*}\left(S^{n-1}\right)$ and $l\left(S^{n-1}\right)^{\perp}$ by p_{1} and p_{2}. Then, for a generalized vector field X, rep. X $=\xi(x)$, on R^{n}, we define the generalized vector fields $D(X)$ and $S(X)$ by

$$
\begin{aligned}
\left(D(X) f^{\prime}\right)(x) & =\left\langle p_{1}(\xi(x)), d_{\rho} f(x)\right\rangle \\
\left(S(X) f^{\prime}\right)(x) & =\left\langle p_{2}(\xi(x)), d_{\rho} f(x)\right\rangle .
\end{aligned}
$$

Then we have
Theorem 4. We may consider X to be a usual vector field on \boldsymbol{R}^{n} if and only if $X=D(X)$. On the other hand, if $X=S(X)$ and f is d_{ρ} differentiable on \boldsymbol{R}^{n} then $X f$ is equal to 0 almost everywhere on \boldsymbol{R}^{n}.

On the other hand, since $l^{*}\left(S^{n-1}\right)=\boldsymbol{R}^{n}$, we consider \boldsymbol{R}^{n} to be a subspace of $C^{*}\left(S^{n-1}\right)$ by (4). Then we can extend $\xi(x)$ ($=$ rep. X) to be a function $\xi^{\sharp}(x): C^{*}\left(S^{n-1}\right) \rightarrow C^{*}\left(S^{n-1}\right)$ and if the function $\|\xi\|(x)$ satisfies the Lipschitz condition, then the equation

$$
\begin{equation*}
\frac{d u(t)}{d t}=\xi^{\sharp}(u(t)) \tag{5}
\end{equation*}
$$

has unique solution in $C^{*}\left(S^{n-1}\right)$ under the given initial condition.
Definition. We call the solution of (5) with the initial condition $u(0)=a$ to be the integral curve of X starts from a.

Then we obtain

Theorem 5. If $X=D(X)$, then the generalized integral curve of X is the usual integral curve of X. On the other hand, if $X=S(X)$ and $u(t)$ is a solution of (5), then we get $p_{1}(u(t))=p_{1}(u(0))$ for all t.

References

[1] Asada, A.: Integration of Alexander-Spanier cochains. J. Fac. Sci. Shinshu Univ., 5, 79-106 (1970).
[2] -: Existence of some metrics on manifolds. J. Fac. Sci. Shinshu Univ., 6, 1-26 (1971).
[3] -: Generalized tangents of curves and generalized vector fields. J. Fac. Sci. Shinshu Univ., 6, 45-75 (1971).
[4] Gâteaux, R.: Fonctions d'une infinité des variables indépendantes. Bull. Soc. Math. France, 47, 70-96 (1919).
[5] Hille, E., and Phillips, R. S.: Functional Analysis and Semi-Groups. Providence (1957).

