19. On the Family of the Solution-Curves of the Integral Inequality

By Takasi Kanazawa, Akira Iwasaki, and Haruo Murakami
Mathematical Institute, Kôbe University
(Comm. by K. Kunugi, m.J.A., Feb. 12, 1954)

A certain generalization of the theorem of Kneser on the differential inequality was shown by Prof. M. Hukuhara. ${ }^{1)}$ In this note, we shall generalize it to the case of integral inequality

$$
\begin{equation*}
\left|u(x)-f(x)-\int_{0}^{x} K(x, t, u(t)) d t\right| \leq p(x) \tag{1}
\end{equation*}
$$

where the functions f, u and K represent n-dimensional vectors, while x, t and p are real ; $f(x)$ is continuous in $0 \leq x \leq 1, K(x, t, u)$ is bounded and continuous in the domain D :

$$
0 \leq t \leq x \leq 1, \quad|u|<\infty,
$$

$p(x)$ is continuous in the interval $0 \leq x \leq 1$.
Suppose that the family \mathfrak{F} of $f(x)$ is a compact continuum in (C) and \mathfrak{H} is the family of the totality of the solution-curves ${ }^{2}$ of (1) with $f(x) \in \mathfrak{F}$. Then, \mathfrak{H} is also a compact continuum in (C).
$c f$. (C) denotes the space of continuous functions on $0 \leq x \leq 1$ with the norm $\|f\|=\max _{0 \leq x \leq 1}|f(x)|$.

It is evident that the family \mathfrak{U} is a closed and compact set in (C). If \mathfrak{U} is not a continuum, \mathfrak{l} must be the sum of two closed, disjoint and non void sets \mathfrak{u}_{1} and \mathfrak{u}_{2}. Let $\widetilde{\mathscr{w}}_{i}$ be the family of the functions $f_{i}(x)$ whose corresponding solutions are in $\mathfrak{u t}_{t}(i=1,2)$. Then \mathfrak{F}_{1} and \mathfrak{F}_{2} are closed and $\mathfrak{F}=\mathfrak{F}_{1} \cup \mathfrak{F}_{2}$. As \mathfrak{F} is a continuum, there exists f_{0} such that

$$
f_{0} \in \tilde{\mathscr{F}}_{1} \frown \tilde{\mathscr{F}}_{2} .
$$

The family \mathfrak{U}_{0} of the solution-curves corresponding to f_{0} contains an element of \mathfrak{u}_{1} and an element of \mathfrak{u}_{2}. Therefore, if we can prove that \mathfrak{u}_{0} is a continuum, \mathfrak{u}_{0} must contain an element which does not belong to \mathfrak{u}. This contradicts to $\mathfrak{u}_{0} \subseteq \mathfrak{u}$. Therefore, it is sufficient to prove that \mathfrak{u}_{0} is a continuum, i.e. the solution-curves \mathfrak{u}_{0} of the following integral inequality

$$
\begin{equation*}
\left|u(x)-f(x)-\int_{0}^{x} K(x, t, u(t)) d t\right| \leq p(x) \tag{2}
\end{equation*}
$$

[^0]is a continuum.
As \mathfrak{U}_{0} is clearly a closed set in (C), if \mathfrak{U}_{0} is not a continuum, \mathfrak{H}_{0} must be sum of two closed and disjoint sets \mathfrak{U}_{0}^{1} and \mathfrak{H}_{0}^{2}. Take $u_{1}(x)$ and $u_{2}(x)$ in \mathfrak{u}_{10}^{1} and \mathfrak{l}_{0}^{3} respectively. And set $\max _{0 \leq x \leq 1}|f(x)|=F$, $|K(x, t, u)| \leq M$ and $\Omega: \quad 0 \leq t \leq x \leq 1, u \leq F+M$.

Consider the integral equation

$$
\begin{equation*}
u(x)=f(x)+\int_{0}^{\alpha} K(x, t, u(t)) d t+\int_{\alpha}^{x} K_{n}(x, t, u(t)) d t \quad(i=1,2) \tag{3}
\end{equation*}
$$

where $0 \leq \alpha \leq 1, K_{n}(x, t, u)$ satisfies the Lipschitz's condition with respect to u and converges to $K(x, t, u)$ uniformly in Ω.

Put ${ }^{3)}$

$$
g_{n}^{i}(x, \alpha)= \begin{cases}u_{i}(x) & \text { for } 0 \leq x \leq \alpha \\ \text { solution of }(3) & \text { for } \alpha \leq x \leq 1,\end{cases}
$$

then

$$
\begin{aligned}
& g_{n}^{i}(x, 1)=u_{i}(x) \\
& g_{n}^{1}(x, 0)=g_{n}^{2}(x, 0) .
\end{aligned} \quad(i=1,2)
$$

Because $g_{n}^{3}(x, \alpha)$, considered as a function of x, is continuous in (C) with respect to α, the sets

$$
\mathscr{E}_{n}=\left\{g_{n}^{3}(x, \alpha) ; \quad i=1,2\right\}
$$

is a continuum which contains $u_{1}(x)$ and $u_{2}(x)$.
Take two open sets \mathfrak{H}_{1} and \mathfrak{S}_{2} in (C) such

$$
\mathfrak{y}_{1} \supset \mathfrak{U}_{0}^{1}, \quad \mathfrak{J}_{2} \supset \mathfrak{U}_{0}^{2}, \quad \mathfrak{g}_{1} \frown \mathfrak{S}_{2}=O .
$$

Then there exists an element $g_{n}\left(x, a_{n}\right)$ in \mathscr{S}_{n} which is not contained in $\mathfrak{H}_{1} \smile \mathfrak{g}_{2}$. The family $\left\{g_{n}\left(x, \alpha_{n}\right)\right\}$ is, as easily be seen, equi-bounded and equi-continuous, so that we can take a uniformly convergent sequence whose limit $g(x)$ is not contained in \mathfrak{u}_{0}, while $g(x)$ is a solution of (2) from its construction. This is a contradiction.
q.e.d.

From this theorem we can easily have the following corollary.
Let C_{0} be a solution-curve of (1). If there are more than two solutions, there exists, for any small positive number ε, a solutioncurve C such that $0<\rho\left(C, C_{0}\right)<\varepsilon$, where $\rho\left(C, C_{0}\right)$ is the distance of C and C_{0} in the space (C).

We wish to express our gratitude to Prof. T. Satô for his kind guidance.

[^0]: 1) M. Hukuhara: Sur une généralisation d'un théorème de Kneser, Proc. Japan Acad., 29, 154 (1953).
 2) 3) For the existence of such solutions, see T. Satô's "Sur les équations integrales non-linéaires de Volterra" (forthcoming in «Compositio Mathematica»).
