59. A Generalization of Ascoli's Theorem

By Hidegorô NAKANO

Mathematical Institute, Hokkaido University (Comm. by K. KUNUGI, M.J.A., April 12, 1954)

Let R be an abstract space. For a double system of mappings $a_{\tau,\lambda}$ of R into uniform spaces $S_{\lambda}(\gamma \in \Gamma_{\lambda}, \lambda \in \Lambda)$, there exists the weakest uniformity U on R for which $a_{\tau,\lambda}(\gamma \in \Gamma_{\lambda})$ is equi-continuous for every $\lambda \in \Lambda$. In an earlier paper¹⁾ we have obtained a condition for which R is complete by U. In this paper we shall consider conditions for which R is totally bounded by U and as a generalization of Ascoli's theorem, we shall prove Theorem II which is essentially more general than that obtained by N. Bourbaki.²⁾

Lemma 1. Let a_{ν} ($\nu=1, 2, ..., n$) be a finite number of mappings of R into uniform spaces S_{ν} with uniformities \mathfrak{B}_{ν} ($\nu=1, 2, ..., n$) respectively. If the image $a_{\nu}(R)$ is totally bounded in S_{ν} for every $\nu=1, 2, ..., n$, then for any $U_{\nu} \in \mathfrak{B}_{\nu}$ ($\nu=1, 2, ..., n$) we can find a finite number of points $a_{\mu} \in R$ ($\mu=1, 2, ..., m$) such that

$$R = \sum_{\mu=1}^m \prod_{\nu=1}^n \mathfrak{a}_{
u}^{-1} U_
u(a_\mu),$$

that is, for any $x \in R$ we can find μ for which

$$\mathfrak{a}_{\nu}(x) \in U_{\nu}(\mathfrak{a}_{\nu}(a_{\mu}))$$
 for every $\nu = 1, 2, \ldots, n$.

Proof. For any $U_{\nu} \in \mathfrak{B}_{\nu}$ ($\nu = 1, 2, ..., n$) we can find by definition $V_{\nu} \in \mathfrak{B}_{\nu}$ such that

$$V_{\nu}^{-1} \times V_{\nu} \leq U_{\nu} \qquad (\nu = 1, 2, \ldots, n).$$

Since the image $a_{\nu}(R)$ is totally bounded by assumption, we can find a finite number of points $y_{\nu,\mu} \in S_{\nu}$ $(\mu=1, 2, \ldots, m)$ such that

$$\mathfrak{a}_{
u}(R) \subset \sum_{\mu=1}^{m_{\mathcal{Y}}} V_{
u}(y_{
u,\mu}) \qquad (
u = 1, 2, \dots, n).$$

Corresponding to every system $\mu_{\nu}=1, 2, ..., m_{\nu}$ ($\nu=1, 2, ..., n$) we select a point $a_{\mu_{1}\mu_{2}...\mu_{n}} \in R$ such that

$$\mathfrak{a}_{\nu}(a_{\mu_1\mu_2\dots\mu_m}) \in V_{\nu}(y_{\nu,\mu_n}) \quad \text{for every } \nu = 1, 2, \dots, n_n$$

if exists. Then for any $x \in R$ we can find $\mu_{\nu}(\nu=1, 2, ..., n)$ such that

 $\mathfrak{a}_{\nu}(x) \in V_{\nu}(y_{\nu,\mu_{\nu}})$ for every $\nu=1, 2, \ldots, n$,

¹⁾ H. Nakano: On completeness of uniform spaces, Proc. Japan Acad., 29, 490-494 (1953).

²⁾ N. Bourbaki: Topologie générale, **3**, Chap. 10, espaces fonctionnels. Paris (1949).

No. 4]

and we have obviously for every $\nu = 1, 2, \dots, n$

 $V_{\nu}(y_{\nu,\mu_{\nu}}) \subset V_{\nu}^{-1} \times V_{\nu}(\mathfrak{a}_{\nu}(a_{\mu_{1}\mu_{2}...\mu_{n}})) \subset U_{\nu}(\mathfrak{a}_{\nu}(a_{\mu_{1}\mu_{2}...\nu_{n}})).$

For a uniformly continuous mapping \mathfrak{a} of a uniform space Rinto a uniform space S, we see easily by definition that if R is totally bounded, then the image a(R) also is totally bounded in S. Thus, recalling the definition of weak uniformity, we obtain immediately by Lemma 1

Theorem I. For a system of mappings $a_{\lambda}(\lambda \in A)$ of an abstract space R into uniform spaces $S_{\lambda}(\lambda \in \Lambda)$, the weak uniformity of R by $\mathfrak{a}_{\lambda}(\lambda \in \Lambda)$ is totally bounded if and only if the image $\mathfrak{a}_{\lambda}(R)$ is totally bounded in S_{λ} for every $\lambda \in \Lambda$.

Lemma 2. For an equi-continuous system of mappings $a_{\lambda}(\lambda \in \Lambda)$ of a uniform space R with uniformity \mathfrak{U} into a uniform space S with uniformity \mathfrak{V} , if R is totally bounded by \mathfrak{U} and the point set

$$\{\mathfrak{a}_{\lambda}(x): \lambda \in \Lambda\}$$

is totally bounded in S for every $x \in R$, then for any $U \in \mathfrak{V}$ we can find a finite number of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, ..., n$) such that for any $\lambda \in \Lambda$ we can find ν for which we have

$$\mathfrak{a}_{\lambda}(x) \in U(\mathfrak{a}_{\lambda}(x))$$
 for every $x \in R$.

Proof. For any $U_0 \in \mathfrak{V}$ we can find by definition $V \in \mathfrak{V}$ such that $V \times V \times V \leq U_0$.

Since the system $a_{\lambda}(\lambda \in \Lambda)$ is equi-continuous by assumption, for such $V \in \mathfrak{V}$ we can find by definition a symmetric connector $U \in \mathfrak{U}$ for which $y \in U(x)$ implies $a_{\lambda}(y) \in V(a_{\lambda}(x))$ for every $\lambda \in \Lambda$. Since R is totally bounded by assumption, we can find by definition a finite number of points $x_{\nu} \in R$ ($\nu = 1, 2, ..., n$) such that

$$R = \sum_{\nu=1}^{n} U(x_{\nu}).$$

Since the point set $\{a_{\nu}(x_{\nu}): \lambda \in A\}$ is by assumption totally bounded for every $\nu = 1, 2, \dots, n$, we can find by Lemma 1 a finite number of elements $\lambda_{\mu} \in \Lambda$ ($\mu = 1, 2, ..., m$) such that for any $\lambda \in \Lambda$ we can find μ for which

 $\mathfrak{a}_{\lambda}(x_{\nu}) \in V(\mathfrak{a}_{\lambda_{\iota}}(x_{\nu}))$ for every $\nu = 1, 2, \ldots, n.$

Then for any $x \in R$ we can find ν such that $x \in U(x_{\nu})$ and we have

$$\mathfrak{a}_{\lambda}(x) \in V(\mathfrak{a}_{\lambda}(x_{
u})) \bigcirc V imes V(\mathfrak{a}_{\lambda_{\mu}}(x_{
u})) \ \bigcirc V imes V imes V(\mathfrak{a}_{\lambda_{\mu}}(x)) \bigcirc U_0(\mathfrak{a}_{\lambda_{\mu}}(x))$$

 $\subset V \times V \times V(\mathfrak{a}_{\lambda_{\mu}}(x)) \subset U_{0}(\mathfrak{a}_{\lambda_{\mu}}(x)),$ because $x \in U(x_{\nu})$ implies $x_{\nu} \in U(x)$ and hence $\mathfrak{a}_{\lambda_{\mu}}(x_{\nu}) \in V(\mathfrak{a}_{\nu_{\mu}}(x)).$

Theorem II. For a double system of mappings $a_{r,\lambda}$ of an abstract space R into uniform spaces S_{λ} with uniformities \mathfrak{B}_{λ} ($\gamma \in \Gamma_{\lambda}$, $\lambda \in \Lambda$), if the image $\mathfrak{a}_{r,\lambda}(R)$ is totally bounded in S_{λ} for every $\gamma \in \Gamma_{\lambda}$ and H. NAKANO

 $\lambda \in \Lambda$ and if for each $\lambda \in \Lambda$ we can find a totally bounded uniformity on the space Γ_{λ} for which the system of mappings $a_{\tau,\lambda}(x) \in S_{\lambda}$ $(x \in R)$ of Γ_{λ} into S_{λ} is equi-continuous, then R is totally bounded by the weakest uniformity for which the system $a_{\tau,\lambda}(\gamma \in \Gamma_{\lambda})$ is equi-continuous for every $\lambda \in \Lambda$.

Proof. For each $\lambda \in \Lambda$ we denote by \mathfrak{b}_{λ} the mapping of R into the power space $S_{\lambda}^{r_{\lambda}}$ with the power uniformity $\mathfrak{B}_{\lambda}^{r_{\lambda}}$ such that

$$\mathfrak{b}_{\lambda}(x) = (\mathfrak{a}_{\tau,\lambda}(x))_{\tau \in F_{\lambda}}$$
 for every $x \in R$.

Recalling Lemma 2, we obtain by assumption that for any $U_{\lambda} \in \mathfrak{B}_{\lambda}$ we can find a finite number of points $x_{\nu} \in R$ ($\nu = 1, 2, ..., n$) such that for any $x \in R$ we can find ν for which we have

$$\mathfrak{a}_{r,\lambda}(x) \in U(\mathfrak{a}_{r,\lambda}(x_{\nu}))$$
 for every $\gamma \in \Gamma_{\lambda}$,

that is, $b_{\lambda}(x) \in U^{\Gamma_{\lambda}}(b_{\lambda}(x_{\nu}))$. Thus we see that the image $b_{\lambda}(R)$ is totally bounded in $S^{\Gamma_{\lambda}}$ by $\mathfrak{B}^{\Gamma_{\lambda}}$ for every $\lambda \in \Lambda$. Since the weak uniformity of R by $b_{\lambda} (\lambda \in \Lambda)$ coincides with the weakest uniformity for which the system $\mathfrak{a}_{\tau,\lambda} (\gamma \in \Gamma_{\lambda})$ is equi-continuous for every $\lambda \in \Lambda$, we conclude therefore Theorem II by Theorem I.