123. Relations between Harmonic Dimensions

By Zenjiro KURAMOCHI

Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., July 12, 1954)

M. Ozawa proposed the following problem:¹⁾ Let F be a nullboundary Riemann surface with one ideal component and D be a non compact domain which has a finite number of analytic curves as its relative boundary. Denote by $\dim D$ the number of linearly independent generalized Green's functions. (See the definition given below.) Let F_0 be a compact disc which has no common point with D. Then we have the relation:

$$\dim D \leq \dim (F - F_0)?$$

It is the purpose of this article to give a solution to the problem.

Let F be an abstract Riemann surface, $\{F_n\}$ an exhaustion of F and D a non compact domain of F, whose relative boundary $\partial D^{2^{j}}$ consists of at most enumerable number of analytic curves clustering nowhere in F. Let $\{p_i\}$ be a sequence of points in D, such that $\{p_i\}$ converges to the boundary of F, and let $G(z, p_i)$ be the Green's function of D with pole at p_i . Take a subsequence of $\{G(z, p_i)\}$ which we call generalized Green's function. Denote by F_0 a compact disc which has no common point with D and let $G_{F-F_0}(z, p_0)$ be the Green's function of $F-F_0$, where p_0 is an inner point of D. In this case, it is clear that $\infty > \lim_i \overline{G_{F-F_0}}(p_i, p_0) \ge \lim_i G(p_i, p_0) > 0$. $\infty > \lim_i \overline{G_{F-F_0}}(p'_i, z) = G_{F-F_0}(z, \{p'_i\}) \ge G(z, \{p'_i\})$ for every point z, whence $G(z, \{p'_i\}) \ge N$. We denote by $D^N(p_0)$ the symmetric surface of $D^N(p_0)(=\mathcal{E}\{z; G(z, p_0) \ge N\})$ with respect to $\partial D^N(p_0)$. Then $D^N(p_0) + D^N(p_0)$ is a null-boundary³⁰.

Lemma.

$$\int_{\partial D^N(\{p'_i\})} \frac{\partial G(z, \{p'_i\})}{\partial n} ds = \delta(\{p'_i\}) \leq 2\pi.$$

Proof. Denote by $\{D_n\}$ the exhaustion of D. Since $G(z, p_i)$ is bounded outside a neighbourhood v of p_i , we have $D_{D^N(p_i)-v}(G(z, p)) < \infty$

¹⁾ At the annual meeting of the Mathematical Society of Japan held on the 30th of May, 1954. M. Ozawa: On harmonic dimensions I and II, to appear in Kdoai Mathematical Seminar Reports.

²⁾ In this article we denote by ∂G the relative boundary of G with respect to F.

³⁾ Z. Kuramochi: Harmonic measures and capacity of a subset of the ideal boundary of abstract Riemann surface, to appear in the Proceedings of the Japan Academy.

No. 7]

by Nevanlinna's theorem.⁴⁾ It follows

$$\lim_{D^{N}(p_{i})\cap\partial D_{n}}\int\frac{\partial(G(z, p_{i}))}{\partial n}\,ds=0,$$

and since

$$rac{\partial G(z, p_i)}{\partial n} \ge 0 \quad ext{on} \quad \partial D^{\scriptscriptstyle N}(p_i) \quad ext{and} \int_{D_n \cap \partial D^{\scriptscriptstyle N}(p_i)} rac{\partial G(z, p)}{\partial n} ds < \infty$$
 ,

we have

$$2\pi = \int_{D \in \cap D^{M}(p_{i})} \frac{\partial G(z, p)}{\partial n} ds = \int_{\partial D^{N}(p_{i})} \frac{\partial G(z, p_{i})}{\partial n} ds,$$

by taking M so large that $D^{M}(p_{i})$ is contained in a compact subset of D. For given D_{n} , since $\{G(z, p'_{i})\}$ converges to $G(z, \{p'_{i}\})$, there exists a number m(n) such that

$$\int_{D_n\cap\partial D^N(\{p'_i\})} \frac{\partial G}{\partial n}(z, \{p'_i\}) ds \leq \int_{D_n\cap\partial D^N(\{p'_i\})} \frac{\partial G(z, p'_m)}{\partial n} ds + \varepsilon \leq \int_{D_n\cap\partial D^N(p'_m)} \frac{\partial G(z, p'_m)}{\partial n} ds + \varepsilon \leq \int_{D_n\cap\partial D^N(p'_m)} \frac{\partial G(z, p'_m)}{\partial n} ds + \varepsilon \leq 2\pi + \varepsilon (m' \geq m(n)).$$

Let $m \rightarrow \infty$ and then $n \rightarrow \infty$. We have

$$\int\limits_{D\cap\partial\mathcal{D}^{N}(p'_{m})}rac{\partial G(z,\ \{p'_{i}\})}{\partial n}ds{=}\delta(\{p'_{i}\}){\leq}2\pi \hspace{15pt} ext{for every}\hspace{15pt}N \hspace{15pt}(N{>}0).$$

Let S(z) be a positive harmonic function in D such that S(z)=0on ∂D , S(z) is finite in $D \cap F$ and $\int_{\delta(D \cap F_n)} \frac{\partial S(z)}{\partial n} ds < \delta(S) < \infty$ $(n=1, 2, 3, \ldots)$. By the same method used in lemma, we can prove that our $G(z, \{p'_i\})$ satisfies the above conditions.

Extremisation. Define harmonic functions $V_n^N(z)$ (n=1,2,...)such that $V_n^N(z)$ is harmonic in $(F_n-F_0-D^N(S))$, $V_n^N(z)=0$ on ∂F_0 $+\{\partial F_n \cap (F-D)\}$, $V_n^N(z)=S(z)=N$ on $\partial D^N(S)$ and $V_n^N(z)=S(z)$ on $\partial F_n \cap (D-D^N(S))$. Then $V_{n+i}^N(z) \ge V_n^N(z)$ and $V_n^{N'}(z) \ge V_n^N(z)$ $(N' \ge N)$. Put $V^N(z) = \lim_n V_n^N(z)$ and $\lim_N V^N(z) = V^*(z)$. We see easily that

$$\frac{\partial V_n^{N}(z)}{\partial n} \leq \frac{\partial S(z)}{\partial n} \quad \text{on} \quad \partial D^{N}(S) + \{(D - D^{N}(S)) \cap \partial F_n\}$$

and

$$rac{\partial V_n^{\scriptscriptstyle N}(z)}{\partial n}\!\leq\!\!0 \qquad ext{on} \qquad \partial F_n \cap (F\!-\!D).$$

Therefore

$$\begin{split} & \infty > \delta(S) = \int\limits_{\partial(D_{\cap}F'_n)} \frac{\partial S(z)}{\partial n} \, ds \geqq \int\limits_{(\partial D^N \cap F'_n) + \{\partial F_n \cap F' - D^N(S)\}} \frac{\partial V_n^N(z)}{\partial n} \, ds \\ & = \int\limits_{\partial F_0} \frac{\partial V_n^N(z)}{\partial n} \, ds \quad \text{ for every } N \text{ and } n. \end{split}$$

4) R. Nevanlinna: Quadratisch integrierbare Differentiale auf einer Riemannschen Manigfaltigkeit, Ann. Acad. Sci. Fenn., A, I, 1 (1941).

Hence $0 < \lim_{v} V^{v}(z) = V^{*}(z) < \infty$.

Let $W^n(z)$ be harmonic in $F_n - F_0$ such that $W^n(z) = 0$ on $\partial F_0 + \partial F_n \cap (F - D)$ and $W^n(z) = S(z)$ on $\partial F_n \cap D$. Take a subsequence of $\{W^n(z)\}$ which converges uniformly in wider sense in D and denote by $S_{ex}(z)$ its limit function. $S_{ex}(z)$ may depend on the exhaustion. Since $S(z) \leq V^*(z)$ on $\partial F_n \cap D$, it is clear that

$$S_{ex}(z) \leq V^*(z).$$
 (1)

We say that this $S_{ex}(z)$ is obtained from S(z) by "extremisation". Theorem 1. The extremisation does not depend on the exhaustion.

Proof. We see, for any positive and harmonic function S(z) which vanishes on ∂D , that the following inequality holds

$$S_{ex}(z) \ge S(z). \tag{2}$$

We see that

 $S^{1}(z) \geq S^{2}(z) \geq 0$ implies $S^{1}_{ex}(z) \geq S^{2}_{ex}(z)$. (3)

For any function S(z) which is positive and harmonic in $F-F_0$, $S_{ex}(z) \leq S(z)$. (4)

For another exhaustion $\{F'_n\}$, define $S_{ex'}(z)$. We have by (2) $S(z) \leq S_{ex}(z)$, which implies $S_{ex'}(z) \leq S_{ex ex'}(z)$, and by (4) and (3) we have

Therefore

$$S_{ex}(z) = S_{ex'}(z).$$

 $S_{ex\ ex'}(z) \leq S_{ex}(z).$

Inverse Extremisation. Let U(z) be a positive harmonic function in $F-F_0$ such that U(z)=0 on ∂F_0 . Let $U^n(z)$ be harmonic function in $D \cap F_n$ such that $U^n(z)=0$ on ∂D and $U^n(z)=U(z)$ on $\partial F_n \cap (F$ $-F_0) \cap D$. Since $\{U^n(z)\}$ is a normal family, there exists a subsequence $\{U^{n\prime}(z)\}$ which converges in wider sense in D to $U_{in\,ex}(z)$. As above, we may prove that the limit function, which we denote by $U_{in\,ex}(z)$, does not depend upon the exhaustion. We say that $U_{in\,ex}(z)$ is obtained from U(z) by "inverse extremisation".

Theorem 2.

$$S(z) = (S_{ex}(z))_{in \ ex}.$$

Proof. Let $U(z) = S_{ex}(z)$ and put $S_{ex}(z) = \lim_{n} W^{n}(z).$ Then $S_{ex}(z) \ge W^{n}(z).$

Now

Therefore $S_{ex}(z) - U^n(z) \ge W^n(z) - S(z)$, and letting $n \to \infty$. We have $S_{ex}(z) - U_{in \ ex}(z) \ge S_{ex}(z) - S(z)$ and $U_{in \ ex}(z) \le S(z)$.

578

No. 7]

On the other hand, it is clear that $(S_{ex}(z))_{in ex} \ge S(z) \ge 0$. Thus we have

$$S(z) = (S_{ex}(z))_{in \ ex}.$$

Property of $S_{ex}(z)$. Let $\hat{V}^n(z)$ $(\check{V}^n(z))$ be harmonic function in $F-F_0$ such that $\hat{V}^n(z)=0$ on $(\partial F_n \cap D) + \partial F_0$, $\hat{V}^n(z)=S_{ex}(z)$ on $\partial F_n \cap (F-D)$, $\check{V}^n(z)=0$ on $\partial F_n \cap (F-D) + \partial F_0$ and $\check{V}^n(z)=S_{ex}(z)$ on $\partial F_n \cap D$. Then $\hat{V}^n(z)+\check{V}^n(z)=S_{ex}(z)$ and $S_{ex}(z)\geq \lim_n \check{V}^n(z)\geq S_{ex}(z)$. Therefore $\lim_n \hat{V}^n(z)=0$.

We have easily next

Corollary 1. If $S^{i}(z)$ and $S^{j}(z)$ are linearly independent in D, then $S^{i}_{ex}(z)$ and $S^{j}_{ex}(z)$ are linearly independent in $F-F_{0}$.

We have, from the property of $S_{ex}(z)$, next

Corollary 2. If D_1 and D_2 are two non compact domains such that $D_1 \cap D_2 = 0$ and $S^i_{D_1}(z)$ and $S^j_{D_2}(z)$ are functions as above on D_1 and D_2 respectively, then $S^i_{D_1 ex}(z)$ and $S^j_{D_2 ex}(z)$ are linearly independent.

From the above corollaries, we have next

Corollary 3. Denote by dim D the number of S(z) satisfying the above three conditions which are linearly independent and by dim $(F-F_0)$ the number of harmonic functions which are linearly independent and vanish on ∂F_0 . Then we have

$$\dim D \leq \dim (F - F_0),^{5}$$

 $\dim^* D_1 + \dim^* D_2 \leq \dim (F - F_0).$

We shall apply the result to the planer surface.

Let U: |z| < 1 be a unit circle and E be a closed set which has z=0 as its limit point. We denote by $G^{i}(z)$ (i=1, 2, ...) the limit function of a uniformly convergent sequence $G(z, p_{j}^{i})$ (j=1, 2, ...)of Green's function of U-E, where $\lim_{j} p_{j}^{i}=(z=0)$. Then all $G^{i}(z)$ are linearly dependent, because U-(z=0) has only one minimal function $-\log |z|$ vanishing on |z|=1. We see that $\int_{\partial (U-E)} \frac{\partial G^{i}(z)}{\partial n} ds$ $< 2\pi$ except at most one, and the other function loose their mass

 $\langle 2\pi \rangle$ except at most one, and the other function loose their mass when $\{p_j^i\}$ tend to z=0. Such assertion holds either when E is or is not so thick distributed that $G^i(z)\equiv 0$ (i=1, 2, ...).

Theorem 3. Let $D_i^N = \mathcal{E}\{z; G^i(z) \ge N\}$, where $G^i(z)$ is a minimal positive function like a Green's function. Then for any fixed N, $(D - \sum_i D_i^N)$ is compact or $\lim_j G(z, q_j) = 0$ for every sequence $\{q_j\} \in (D - \sum_i D_i^N)$ which converges to the boundary.

⁵⁾ It is clear that $\dim^{**} D \leq \dim^* D$. Thus the corollary gives the answer to the problem mentioned at the top of this note.

Z. KURAMOCHI

Proof.
$$\int_{\partial D^{N}(q_{j})} \frac{\partial G(z, q_{j})}{\partial n} ds = 2\pi, \text{ then, by Fatou's lemma,}$$
$$0 \leq \delta = \int_{\partial D^{N}(\{q_{j}\})} \lim_{j} \frac{\partial G(z, q_{j})}{\partial n} ds \leq \lim_{j} \int \frac{\partial G(z, q_{j})}{\partial n} ds = 2\pi.$$

We see easily that δ is zero if and only if $G(z, \{q_j\})=0$. And we can prove the validity of Green's formula for $G(z, \{q_j\})$ by the same method used in Lemma. Thus the theorem may be proved similarly as in the previous paper.⁶

Remark. Theorem 1^{τ_0} to corollary 3 are valid for function $K(z, \{p_i\})$ defined by $\frac{G(z, \{p_i\})}{G(p_0, \{p_i\})}$, when $K_{ex}(z, \{p_i\}) < \infty$.

For example, we have the result.

Let $\{p_i\}$ be a sequence in D which converges to the boundary of F, and if there exists a constant such that

$$\delta \geq \overline{\lim_{\iota}} rac{G_{F-F_0}(p_i,\,p_0)}{G(p_i,\,p_0)},$$

where $G_{F-F_0}(z, p_0)$ and $G(z, p_0)$ are Green's functions of $F-F_0$ and D respectively.

Proof.

$$\frac{K(z, p_i)}{K_{F-F_0}(z, p_i)} = \frac{G(z, p_i)}{G(p_0, p_i)} \frac{G_{F-F_0}(p_0, p_i)}{G_{F-F_0}(z, p_i)} \leq \delta,$$

 $K_{F-F_0}(z,p) \ge \frac{1}{\delta} K(z,p_i)$ for sufficiently large *i*.

Hence

$$\infty > K_{F-F_0}(z, \{p_i\}) \ge \frac{1}{\delta} K_{ex}(z, \{p_i\}).$$

580

⁶⁾ Z. Kuramochi: An example of a null-boundary Riemann surface, Osaka Math. Journ., 6 (1954).

⁷⁾ Through this article we do not assume that F is a null-boundary Riemann surface.