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123. Relations between Harmonic Dimensions

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.J.A., July 12, 1954)

M. 0zawa proposed the following problem: Let F be a null-
bouadary Riemann surface with one ideal component and D be a non
compact domain which has a finite number of analytic curves as its

**relative boundary. Denote by dim D the number of linearly inde-
pendent generalized Green’s functions. (See the definition given below.)
Let F0 be a compact disc which has no common point with D. Then
we have the relation:

**
dim D dim (F-F0) ?

It is the purpose of this article to give a solution to the problem.
Let F be an abstract Riemann surface, {F.} an exhaustion of

F and D a noa compact domain of F, whose relative boundary D
consists of at most enumerable number of analytic curves clusteri
nowhere in F. Let {p} be a sequence of points in D, such that
{p} converges to the boundary of F, and let G(z, p) be the Green’s
function of D with pole at p. Take a subsequence of {G(z, p)} which
converges uniformly to a non-constant function G(z, {p}) which we
call generalized Green’s function. Denote by F0 a compact disc
which has no common point with D and let G_.o(Z, Po) be the Green’s
function of F-F0, where P0 is an ianer point of D. In this case, it

is clear that >lim G,_(p, po)lim G(p, po)>O. >lim G_o(p, z)

=G._(z, {p})G(z, {p}) for every point z, whence G(z, {p}) is finite
in DF (n-1,2,3,...). Put D([g})-[z;G(z,{p})N}. We

A
denote by D’(po) the symmetric surface of D’(po)(--[z; G(z, p0)N}
with respect to D(po). Then D(po)+D(po) is a null-boundary)

Riemann surface.
Lemma.

Va(z, {p,l)ds_8({p}
Proof. Denote by {D} the exhaustion of D. Since G(z, p) is

bounded outside a neighbourhood v of p, we have D (G(z, p))<
(pl)--v

1) At the annual meeting of the Mathematical Society of Japan held on the 30th
of May, 1954. M. 0zawa: On harmonic dimensions I and II, to appear in KdSai
Mathematical Seminar Reports.

2) In this article we denote by 8G the relative boundary of G with respect to F.
3) Z. Kuramochi: Harmonic measures and capacity of a subset of the ideal

oundary of abstract Riemann surface, to appear in the Proceedings of the Japan
Academy.
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by Nevanlinna’s theorem.) It follows
lim/" (G(z, p,) ds-O,J

and since
G(z, p) >_0 on DS(p) and f G(z,
n n

we have

f G(z, p)ds=f G(z, P).ds,
by taking M so large that D(p) is contained in a compact subset
of D. For given D,, since [G(z,p)} converges to G(z,[p}), there
exists a number re(n) such that

G(z, p) dsn n n
1)nD ({P }) DnD({Pti}) DnD (Ptm)

+ 2e < OG(z, p) 4s + 3s<2+3s(m’m(n)).
DSD (ptm)

Let and then. We have

)-({p} )<2 every9G(z, for N

Let S(z) be a positive harmonic function in D such that S(z)=0

on D, S(z) is finite in D F and f --S(z) ds< $(S)< (n= 1,n
2, 3,...). By the same method used in lemma, we can prove that
our G(z, [p}) satisfies the above conditions.

Extremisation. Define harmonic functions Vff(z) (n=l, 2, ...)
such that VZ(z) is harmonic n (F.-FoD(S)), Vff(z)-O on eFo
+ [eF. N (F- D)}, V (z)- Z(z)-N on D(S) and V. (z)- S(z) on

V (z)V(z) (N’N).F. N (D D(). Then ..+,(z)(z) and
ut f(z)--lim .(z) and tim V(z) Y*(z). We see eaMly that

S(z)V.(z) _< on D(S) + [(D-D(Z))n n
and

Nv, (z) __<o on F. N (F- D).n
Therefore

(.n,’
n (SDNN2,n)+{2,nNF_I)N()

V,,(z) dsn
2"

.iVV. (z) dsn

for every N and n.

4) R. Nevanlinna" Quadratisch integrierbare Differentiale auf einer Riemannschen
Manigfaltigkeit, Ann. Acad. Sci. Fenn., A, I, 1 (1941).
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Hence 0<: lim V(z) V*(z)< .
Let W’(z) be harmonic in F-Fo such that W(z)=0 on Fo

+F 0 (F-D) and W’(z)--S(z) on F( D. Take a subsequence
of [W’(z)} which" converges uniformly in wider sense in D and de-
note by S(z) its limit function. S,(z) may depend on the exhaustion.
Since S(z)V*(z) on F ( D, it is clear that

v*(z).
We say that this S(z) is obtained from S(z) by "extremisation ".
Theorem 1. The extremisation does not depend on the exhaus-

tion.
Proof. We see, or any positive and harmonic function S(z)

which vanishes on D, that he following inequality holds
S(z)S(z). 2 )

We see that
S(z)_>S(z)O implies Sz(z)S(z). 3

For any function S(z) which is positive and harmonic in F-Fo,

S (z) Z(z). 4
For another exhaustion [F}, define S,(z). We have by (2)

S(z)S(z), which implies S,(z)_S,,(z),
and by (4) and (3) we have

Therefore

Inverse Extremisation. Let U(z) be a positive harmonic function
in F-Fo such that U(z)=0 on F0. Let U(z) be harmonic function
in DO F. such that U(z)=0 on D and U’(z)=U(z)on F 0 (F
-Fo)OD. Since [U(z)} is a normal family, there exists a sub-
sequence [U’(z)} which converges in wider sense in D to U.(z).
As above, we may prove that the limit unction, which we denote
by Uo(z), does not depend upon the exhaustion. We say that
U (z) is obtained from U(z) by "inverse extremisation ".

Theorem 2.

Z(z)
Proof. Let U(z)=S,(z) and put S(z)--lim W’(z). Then

S,(z)- U’(z) S,(z) on D,
W(z)- S(z)-- W’(z) on D,
Zo(z)- U"(z)--0 on VF. ( D,
W(z) Z(z) 0 on F. ( D.

Therefore S(z)- U(z):> W’(z) S(z), and letting n-. We have
S(z)-U (z):>S.(z)- S(z) and U (z)S(z).
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On the other hand, it is clear that (S(z))oS(z)O. Thus we
have

A
Property of S(z). Let V(z) (’(z)) be harmonic function in

A A
F- Fo such that V’(z)- 0 on (F, f D) + Fo, V(z)-S(z) on F
f (F- D), V’(z)-0 on F( (F- D) +F0 and V’(z)- S,(z) on F
( D. Then V(z)+ V’(z)-S(z) and S,(z)lim V(z)>:S,(z). There-
fore lim ’(z)- 0.

We trove easily next
Corollary 1. If St(z) and S(z) are linearly indepen.dent in D, then

ZS( and S.(z) are linearly independent in F-Fo.
We have, from the property of S(z), next
Corollary 2. If D1 and D2 are two non compact domains such that

D1 ( D-O and Sl(z) and S,,,(z) are functions as above on DI and
D. respectively, then S o(z) and Sz(z) are linearly independent.

From the above corollaries, we have aext
Corollary 3. Denote by dim D the number of S(z) satisfying

the above three conditions which are linearly independent and by
dim(F-F0) the number of harmonic functions which are linearly
independent and vanish on Fo. Then we have

dim Ddim (F-Fo),
dim D +dim Ddim (F-F0).

We shall apply the result to the planer surface.
Let U" zl<l be a unit circle and E. be a closed set which

has z-0 as its limit point. We denote by G(z) (i:1,2, ...) the
limit unction o a uniformly coavergent sequence G(z, p.) (j-1, 2,
of Green’s function oi U-E, where lira p.--(z-0). Then all G(z)
are linearly dependent, because U-(z-O) has only one minimal

-loglzl vanishing on Iz]-l. We see that [" G(Z)ds2unction
J n

<2r except at most one, and the other function loose their mass
when [p.} tend to z-0. Such assertion holds either when E is or
is not so thick distributed that G(z)O (i=1, 2,...).

Theorem 3. Let D-d[z; G:(z):N}, where G(z) is a minimal
positive function like a Green’s function. Then for any fixed N,
(D-, D,) is compact or lim G(z, q)- 0 for every sequence [q}
e (D--, D) which converges to the boundary.

5) It is clear that dim DdimD. Thus the corollary gives the answer to the
problem mentioned at the top of this note.
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Proof. f G(z,q) ds-2r, then, by Fatou’s lemma,

0 f lira Gz, q) dslim; G(z, q) ds=2.

We see easily that 8 is zero if and only if G(z, [q})=O. And we
can prove the validity of Green’s formula for G(z, {q}) by the same
method used in Lemma. Thus the theorem may be proved similarly
as in the previous paper.

Remark. Theorem 1) to corollary 3 are valid for function
G(z, {p})), when K=(z, {p})< .K(z, {p defined by
G(po, {p}

For example, we have the result.
Let [p} be a sequence in D which converges to the boundary

of F, and if there exists a constant such that

3lim G’-’o(P’ Po)
G(p, po)

where G._.o(z, po) and G(z, Po) are Green’s functions of F-Fo and D
respectively.

Proof.
K(z, p,) V(z, p,) V_,,o(po, p) <

g_,.o(z, p,) V(po, p) G,-,.o(z, p,)

p)K(z, p) for sufficiently large i.

Hence

6) Z. Kuramochi: An example of a null-boundary Riemann surface, Osaka Math.
Journ., 6 (1954).

7) Through this article we do not assume that F is a null-boundrry Riemann
surface.


